• Title/Summary/Keyword: Nozzle velocity ratio

Search Result 147, Processing Time 0.02 seconds

Effects of the design variables and their constraints on the stage performance of an axial flow turbine (축류 터빈의 설계 변수 및 설계 변수의 제한조건이 성능에 미치는 영향)

  • 박호동;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2109-2124
    • /
    • 1991
  • A simulation program is developed to analyse the performance of an axial flow turbine stage based on the meanline prediction method. The gradient projection method is utilized to minimize the aerodynamic losses under the specified constraints on such as flow coefficient, total pressure ratio, stage power and blade loading coefficient. After obtaining the optimum point for minimizing the stage loss, a sensitivity analysis is carried out ground the optimum point to find the effects of the design variables and the design constraints on the stage performance. The result of the senitivity analysis under a constant blade loading coefficient shows that the total loss is more sensitive to the mean diameter, the absolute flow angle at nozzle outlet, the relative flow angle at rotor outlet and the axial mean velocity compared to the chords and the pitches. Moreover, the design constraints on the degree of reaction at root and the blade length-to-diameter ratio are found to be most influencial on the maximization of the overall aerodynamic efficiency.

The Ejector Design and Test for 5kW Molten Carbonate Fuel Cell (75kW 용융탄산염 연료전지 시스템의 MBOP 개발)

  • Kim, Beom-Joo;Kim, Do-Hyung;Lee, Jung-Hyun;Kang, Seung-Won;Lim, Hee-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.353-356
    • /
    • 2009
  • A pivotal mechanical balance of plant for 75kW class molten carbonate fuel cells comprise of a catalytic burner and an ejector which has been designed and tested in KEPRI(Korea Electric Power Research Institute). The catalytic burner, which oxidizes residual fuel in the anode tail gas, was operated at several conditions. Some problems arose due to local overheating or auto-ignition, which could limit the catalyst life. The catalytic burner was designed by considering both gas mixing and gas velocity. Test results showed that the temperature distribution is very uniform. In addition, an ejector is a fluid machinery to be utilized for mixing fluids, maintaining vacuum, and transporting them. The ejector is placed at mixing point between the anode off gas and the cathode off gas or the fresh air Several ejectors were designed and tested to form a suction on the fuel tail gas and balance the differential pressures between anode and cathode over a range of operating conditions. The tests showed that the design of the nozzle and throat played an important role in balancing the anode tail and cathode inlet gas pressures. The 75kW MCFC system built in our ejector and catalytic burner was successfully operated from Novembe, 2008 to April, 2009. It recorded the voltage of 104V at the current of 754A and reached the maximum generating power of 78.5kW DC. The results for both stand-alone and integration into another balance of plant are discussed.

  • PDF

An Experimental Study of Combustion Characteristics in a Model Gas Turbine Combustor (모형 가스터빈 연소기의 기초 연소특성에 대한 실험적 연구)

  • Lee, Jang-Su;Kim, Min-Ki;Park, Sung-Soon;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.263-266
    • /
    • 2009
  • The mainly objectives of this study was a combustion dynamics and instability characteristics in a model gas turbine dump combustor which is the scale down of GE 7FA+e DLN 2.6 gas turbine combustor. Model gas turbine injector has 2-stage swirl vane and it’s reduced 1/3 size of the original one. The shape of plenum and combustor were designed for similar acoustic characteristics. Inlet air was preheated to $200{\sim}400^{\circ}C$. The flow velocity at mixing nozzle was 30 to 75 m/s and equivalent ratio was 0.4 to 1.2. The combustor length was varied for different acoustic characteristics to $375{\sim}700\;mm$. As the result, this research have been show the combustion instability was observed at lower equivalence ratios ($\Phi$ < $0.5{\sim}0.6$) and higher equivalent ratios ($\Phi$ > $1.1{\sim}1.2$).

  • PDF

Combustion Test Results of 1/2.5-scale Thrust Chamber for 75tonf-Class Liquid Rocket Engine (75톤급 액체로켓엔진 1/2.5-scale 연소기 연소시험 결과)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Lee, Kwang-Jin;Lim, Byoung-Jik;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.69-73
    • /
    • 2009
  • Combustion test results of 1/2.5-scale thrust chamber for 75tonf-class liquid rocket engine were described. The thrust chamber has chamber pressure of 60 bar, propellant mass flow rate of 89 kg/s, and nozzle expansion ratio of 12. The combustion tests were conducted to verify the combustion performance, the regenerative cooling performance and the durability of thrust chamber at design point condition, and then were performed to confirm the operation and the combustion performance at low combustion pressure condition. All the tests had been successfully executed without the damage of the hardware. These test results present a possibility of hot firing test at low combustion pressure condition, and can be used as fundamental data to predict the combustion performance at design point condition for 75 tonf thrust chamber.

  • PDF

On Implementation of the Finite Difference Lattice Boltzmann Method with Internal Degree of Freedom to Edgetone

  • Kang, Ho-Keun;Kim, Eun-Ra
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2032-2039
    • /
    • 2005
  • The lattice Boltzman method (LBM) and the finite difference-based lattice Boltzmann method (FDLBM) are quite recent approaches for simulating fluid flow, which have been proven as valid and efficient tools in a variety of complex flow problems. They are considered attractive alternatives to conventional finite-difference schemes because they recover the Navier-Stokes equations and are computationally more stable, and easily parallelizable. However, most models of the LBM or FDLBM are for incompressible fluids because of the simplicity of the structure of the model. Although some models for compressible thermal fluids have been introduced, these models are for monatomic gases, and suffer from the instability in calculations. A lattice BGK model based on a finite difference scheme with an internal degree of freedom is employed and it is shown that a diatomic gas such as air is successfully simulated. In this research we present a 2-dimensional edge tone to predict the frequency characteristics of discrete oscillations of a jet-edge feedback cycle by the FDLBM in which any specific heat ratio $\gamma$ can be chosen freely. The jet is chosen long enough in order to guarantee the parabolic velocity profile of a jet at the outlet, and the edge is of an angle of $\alpha$=23$^{o}$. At a stand-off distance w, the edge is inserted along the centerline of the jet, and a sinuous instability wave with real frequency is assumed to be created in the vicinity of the nozzle exit and to propagate towards the downstream. We have succeeded in capturing very small pressure fluctuations resulting from periodic oscillation of the jet around the edge.

Development and Launching Test of 10N Class Liquid Propellant Rocket (10뉴턴급 추진력의 액체로켓 개발 및 발사시험)

  • Lee, Jung-Sub;Choi, Won-June;Kim, Min-Ki;Moon, Ki-Hyun;Song, Seong-Hwan;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.375-379
    • /
    • 2008
  • In this paper, a 10N class liquid propellant rocket utilizing a dissolving reaction of hydrogen peroxide is constructed and tested. Through a series of designs, seven orifices with a diameter of 200 ${\mu}m$ and a nozzle with a neck of 2.5mm in diameter and area ratio of 2.56 were made. The platinum coated on Isolite was used for catalyst. 90wt% peroxide pressed at 20 bar by nitrogen gas was used for performance evaluation. The length of the catalyst bed and the load of platinum was taken as the parameters for this experiment. For the catalyst support length of 4cm loaded on 5wt% platinum, satisfactory $c^*$ efficiency and stable thrust was observed. The light weight body of the rocket was composed of aluminum. Rocket rose about 10m with relatively constant velocity in launching test.

  • PDF

Study on Computational Fluid Dynamics(CFD) Simulation for De-NOx in the incinerator at Taebaek city (태백시 소각로 내 NOx 제거를 위한 전산유체역학(CFD) simulation 연구)

  • Kim, Ji-Hyun;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.320-332
    • /
    • 2013
  • The feed air to MSW incinerator influences on the residence time of combustion gas, removal of unburnt ash and exiting gas temperature. Thus the secondary air volume could present sufficient residence time which can maintain the exiting temperature over $850^{\circ}C$. The secondary air also relates directly with the turbulence in the inside of combustion chamber, which finally provide the stable combustion condition. The present study designed a modern incinerator for a field scale, and evaluation of the potential amount of primary air based on the daily combustible quantity. From the evaluated primary air volume, the secondary air flow rate could be estimated, and its dynamic behavior was verified. In addition, the obtained air volume enables to find an optimum operation condition of the combustion. As a result of the CFD simulation, the air ratio 75 : 25 between primary and secondary air amount was optimum ratio than design criteria 72 : 28. And the flow velocity ratio of front-back of secondary air jet nozzle was found excellent at 1 : 3. In addition, the result of applied to the plant, the removal efficiency of NOx and CO generation would concentration of CO.