• 제목/요약/키워드: Nozzle flow

검색결과 1,829건 처리시간 0.022초

PIV를 이용한 충돌제트의 유동특성에 관한 연구 (The Study on Flow Characteristics of Impinging Jet Using PIV)

  • 김동균;김정환;김시범;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.717-722
    • /
    • 2001
  • A present study is the flow characteristics of impinging jet by PIV measurement and numerical analysis. The flow characteristics of impinging jet flow are affected greatly by nozzle inlet velocity. An circular sharp edged nozzle type$(45^{\circ})$ was used to achieve uniform mean velocity at the nozzle inlet, and its diameter is 10mm(d). Therefore, the flow characteristics on the impinging jet can be changed largely by the control of main flow. In this parent study, we investigate the effects of inlet velocity, its variable is nozzle inlet Reynolds numbers(Re=1500, 3000, 4500, 6000 and 7500).

  • PDF

노즐을 적용한 흡기 매니폴드의 배출가스 고찰 (Investigation of the Exhaust gas on the Intake Manifold using Nozzle)

  • 김만재;김태중;최병기
    • 공학기술논문지
    • /
    • 제11권4호
    • /
    • pp.253-257
    • /
    • 2018
  • Exhaust gas from the combustion of automobiles adversely affects the human body and even pollutes the atmosphere. This study investigated the influence of exhaust gas change on intake manifold using the nozzle. First, the flow analysis was performed using the 3D flow analysis program. When the nozzle inlet air velocity increased, the average air velocity in the nozzle diameters of ${\Phi}2.5$ and ${\Phi}5$ increased 37.3% and 31.9% respectively at the intake manifold outlet. As the nozzle inlet air velocity increased, the maximum flow rate of air increased to 42.2% and 32.6%, respectively at nozzle diameters of ${\Phi}2.5$ and ${\Phi}5$. In order to verify the analysis results, experiments on the exhaust gas were performed in the engine simulation system. As the nozzle inlet velocity increased, HC values decreased by 42.4% and 31.4% at nozzle diameters of ${\Phi}2.5$ and ${\Phi}5$, respectively. And CO values decreased by 40.7% and 31.1% at nozzle diameters of ${\Phi}2.5$ and ${\Phi}5$.

The Effects of Injector Nozzle Geometry and Operating Pressure Conditions on the Transient Fuel Spray Behavior

  • Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.617-625
    • /
    • 2003
  • Effects of Injector nozzle geometry and operating pressure conditions such as opening pressure, ambient pressure. and injection pressure on the transient fuel spray behavior have been examined by experiments. In order to clarify the effect of internal flow inside nozzle on the external spray, flow details Inside model nozzle and real nozzle were alto investigated both experimentally and numerically. for the effect of injection pressures, droplet sizes and velocities were obtained at maximum line pressure of 21 MPa and 105 MPa. Droplet sizes produced from the round inlet nozzle were larger than those from the sharp inlet nozzle and the spray angle of the round inlet nozzle was narrower than that from the sharp inlet nozzle. With the increase of opening pressure, spray tip penetration and spray angle were increased at both lower ambient pressure and higher ambient pressure. The velocity and size profiles maintained similarity despite of the substantial change in injection pressure, however, the increased injection pressure produced a higher percentage of droplet that are likely to breakup.

노즐용삭을 고려한 노즐모델의 정상상태 열가스 유동해석 (Steady State Hot Gas Flow Analysis for Nozzle Model Considering Nozzle Ab)

  • 이병윤;송기동;박경엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.622-624
    • /
    • 2002
  • This paper describes a method for steady state hot gas flow analysis considering nozzle ablation for the nozzle of $SF_6$ gas circuit breaker. In order to take account of the effect of ablated nozzle material on the hot gas flow. the PTFE mass concentration equation is added to the established equations for hot gas flow analysis. The steady state simulations were carried out under the condition of DC current flows and the results are presented.

  • PDF

전자유압 서보 유량제어밸브의 설계 및 동특성 향상에 관한 연구 (A Study on the Design and the Dynamic Characteristics of Electro-Hydraulic Flow Control Servo Valve)

  • 김고도;김수태
    • 한국정밀공학회지
    • /
    • 제17권2호
    • /
    • pp.151-160
    • /
    • 2000
  • An experimental and theoretical analysis for the improvement of dynamic characteristics and design of electro-hydraulic flow control servo valve are performed. The theoretical results are compared with the experimental step responses, and the important design parameters of an electro-hydraulic flow control servo valve are derived by using the simulation program. Simulation parameters of nozzle jet coefficient and orifice and spool valve discharge coefficient are given through experiment. The theoretical and experimental step response curves show that the valve gain depends on the fixed orifice and nozzle $ratio(R_on)$ and is maximum at $R_on=1.$ And drain orifice in the flapper - nozzle return line creates a small back pressure, which improves the performance fur the valve.

  • PDF

KSR-III 로켓 노즐의 열화학적 성능해석 (Thermochemical Performance Analysis of KSR-III Rocket Nozzle)

  • 최정열;최환석;김영목
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제22회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.90-98
    • /
    • 2001
  • Characteristics of high temperature rocket nozzle flow is discussed along with the aspects of computational analysis. Three methods of nozzle flow analysis, frozen-equilibrium, shifting-equilibrium and non-equilibrium approaches, were discussed, those were coupled with the methods of computational fluid dynamics code. A chemical equilibrium code developed for the analysis of general hydrocarbon fuel was coupled with three approaches of nozzle flow analysis. The approaches were used for the performance prediction of KSR-III Rocket, and compared with the theoretical results from NASA CEA (Chemical Equilibrium with Applications) code.

  • PDF

제트팬 노즐내부 유동에 대한 고정익 출구 원주속도의 영향 (Effect of Circumferential Velocity from Guide Vane on the Nozzle Flow of a Jet Fan)

  • 최충현;이재헌
    • 설비공학논문집
    • /
    • 제13권3호
    • /
    • pp.209-216
    • /
    • 2001
  • A numerical study is peformed to investigate the effect of circumferential velocity generated by the guide vane on the nozzle flow of a jet fan, s a way of increasing the penetration force of jet fan with nozzle of 175mm diameter. For the validation of numerical results. the velocity is measured by a 5-hole pitot tube and flow visualization is conducted by the tuft method. Under the inlet condition that the maximum circumferential velocity in the stator outlet of the present jet fan is 1.8m/s, the axial velocity in the nozzle outlet has the feature that the velocity at the axis is low and the velocity near the wall high. Therefore, to increase the throw length of the jet fan, the configuration of the fairing and nozzle needs to be developed and the precise revise of the stator angle is required, In addition, the bigger the circumferential velocity, the smaller the axial velocity at the axis and the bigger non-uniformity of the flow distribution.

  • PDF

원형노즐 출구 유동장의 수치해석 (Numerical Analysis of the Flow Field of Circular Nozzle Exit Region)

  • 정의준;오상한;손창호
    • 한국유체기계학회 논문집
    • /
    • 제13권6호
    • /
    • pp.13-18
    • /
    • 2010
  • The programs of grid generation and flow analysis for the 3-D flow field. were developed. The finer results from numerical analysis could be obtained by using developed programs than those of the experimental data in the flow field of the circular nozzle exit region. Especially A virtual-origin of 3.2 times of nozzle diameter within three percent error inside from nozzle exit plane could be obtained.

노즐/플래퍼형 유량제어 서보밸브의 특성에 관한 연구 (A Study On Characteristics of Nozzle/Flapper Type Flow Control Servo Valve)

  • 윤소남;강보식;성백주;김형의
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.54-62
    • /
    • 2000
  • The purpose of this study is to bring out the optimal design factors which effect on dynamic characteristics in the design of flow control servo valve with high response characteristics, and to verify the validity of the design factors. In this study, force feedback type flow control valve with nozzle/flapper and with no drain is studied. And, the effect of the parameters, such as fixed orifice, nozzle diameter, and maximum displacement between nozzle and flapper are analyzed. We have done simulations using the optimal design factors and simulink(Matlab) as a simulation tool, and verified the validity of our simulations by means of comparison our simulation results with an experimental results of another similar valve.

  • PDF

저점성 SWNT 분산액 도포용 슬릿 노즐 설계를 위한 유동해석 (A STUDY ON FLOW IN A SLIT NOZZLE FOR DISPENSING A LOW-VISCOSITY SOLUTION OF SINGLE-WALLED CARBON NANOTUBES)

  • 손병철;곽호상;이상현
    • 한국전산유체공학회지
    • /
    • 제14권1호
    • /
    • pp.78-85
    • /
    • 2009
  • A combined theoretical and numerical study is conducted to design a slit nozzle for large-area liquid coating. The objectives are to guarantee the uniformity in the injected flow and to provide the capability of explicit control of flow rate. The woking fluid is a dilute aqueous solution containing single-walled carbon nanotubes and its low viscosity and the presence of dispersed materials pose technical hurdles. A theoretical analysis leads to a guideline for the geometric design of a slit nozzle. The CFD-based numerical experiment is employed as a verification tool. A new flow passage unit, connected to the nozzle chamber, is proposed to permit the control of flow rate by using the commodity pressurizer. The numerical results confirm the feasibility of this idea. The optimal geometry of internal structure of the nozzle has been searched for numerically and the related issues are discussed.