• Title/Summary/Keyword: Nozzle area ratio

Search Result 128, Processing Time 0.024 seconds

Numerical Analysis of Combustion Field for Different Injection Angle in End-burning Hybrid Combustor (End-burning 하이브리드 연소기 인젝터 분사각에 따른 연소 유동장의 수치적 연구)

  • Yoon, Chang-Jin;Kim, Jin-Kon;Moon, Hee-Jang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1108-1114
    • /
    • 2007
  • The effect of oxidizer injection angle on the combustion characteristics of end-burning hybrid combustor is numerically investigated. Besides the previously studied parameter(injector arrangement, port diameter and O/F ratio), three different injection angle are considered: parallel angle to fuel surface(Case 1), +30 degree inclined angle toward the fuel(Case 2) and 30 degree inclined angle toward the nozzle(Case 3). It is found that Case 2 has the best mixing pattern in the upstream area but has the worst combustion efficiency since non negligible amount of unburned fuel is expelled from the nozzle. In contrast, though Case 1 and Case 3 showed relatively low mixing effect than the Case 2, they had high combustion efficiency. The comparison of numerical results between Case 1 and Case 3 demonstrate that no major difference is encountered, however, Case 1 is expected to have the best combustion efficiency due to the low residence time of the Case 3 injector which heads toward the nozzle.

Performance Prediction and Analysis of a MEMS Solid Propellant Thruster (MEMS 고체 추진제 추력기의 성능예측 및 분석)

  • Jung, Juyeong;Lee, Jongkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2017
  • The performance of a MEMS solid propellant thruster was predicted and analyzed through internal ballistics model and CFD analysis. The nozzle throat was $416{\mu}m$, and the area ratio of the nozzle was 1.85. As a result of the internal ballistics model, chamber pressure increased up to 197 bar and the maximum thrust was 3,836 mN. In CFD analysis, the chamber pressure of the internal ballistics model was applied as the operating pressure, and the CFD model was divided into an adiabatic and a heat loss model. As a result, the maximum thrust of the adiabatic model was 14.92% lower than that of the internal ballistics model, and the effect of heat loss was insignificant.

Combustion Characteristics of Fuel-rich Gas Generator with Impinging Injector for a Liquid Rocket Engine (액체로켓엔진에서 충돌형 분사기 형태의 연료과잉 가스발생기 연소특성)

  • Han, Yeoung-Min;Kim, Seung-Han;Lee, Kwang-Jin;Moon, Il-Yoon;Seol, Woo-Seok;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.64-70
    • /
    • 2005
  • The overall results of hot firing tests of fuel-rich gas generator with impinging injector at design and off-design points are described. The gas generator consists of an injector head with impinging injector, a water cooled combustor wall, a turbulence ring to enhance mixing, an instrument ring measuring temperature and pressure and a nozzle. The combustion tests were successfully performed without damage of gas generator. Test results show that the outlet temperature is not dependent on residence time of hot gas within 4~6msec but dependent on chamber pressure. The relation between outlet temperature and combustion efficiency resulting from measured pressure, mass flow rate and area of nozzle throat is shown. The overall O/F ratio is the critical parameter to determine the outlet temperature and the linear correlation between two parameters is established.

Numerical Study on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 시스템에 관한 수치해석적 연구)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.156-160
    • /
    • 2007
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some sonic and subsonic ejectors with the function of changing nozzle position were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Performance Analysis on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 성능 해석)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.256-259
    • /
    • 2008
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Measurement of Radiative Heat Flux of Nozzle Exit (노즐 후방부의 Radiative Heat Flux 측정)

  • An, Won Geun;Park, Hui Ho;Hwang, Su Gwon;Kim, Yu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.87-92
    • /
    • 2003
  • In rocket systems, somtimes special devices or equipments are installed near the nozzle exit area where high temperature and pressure combustion gas flows. To pretect these subsystems from severe thermal environment, it is necessary to have accurate thermal data measured from the experimental liquid rocket firing test. Test variables were combustion pressure (200, 300, 400 psi) and mixture ratio (1.5, 2.0, 2.5) and quartz was used as a heat probe. Measurement technique used in this research can be also applied to measure the radiative heat flux inside the combustion chamber which is important imput data for the liquid rocket regenerative cooling system design.

Thrust and Aerodynamic Load Characteristics of an Internal Pintle Thruster (노즐 목 내부형 핀틀추력기의 추력 및 공력하중 특성)

  • Choi, Junsub;Kim, Dongyeon;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.1-9
    • /
    • 2017
  • Numerical computations are performed to investigate the effect of pintle stroke on the performance of an internal pintle thruster. Results show that the thrust control ratio was less than 2% and the aerodynamic load ratio was 22% as the pintle stroke increased. The flow past the nozzle throat rapidly expanding because of the shape of the pintle, and a shock wave was generated. Particularly, at the pintle stroke distance of 4 and 5 mm, the shock wave hit the wall of the nozzle, results in peeling bubbles. Depending on the altitude, the thrust increased and the aerodynamic load decreased, but the difference was as small as 1.5%. In the presence of the bore, the reduction of the pintle tip area resulted in a decrease in aerodynamic load.

Characteristics of SMD and Volume Flux of Two-phase Jet Injected into Cross-flow with Various Gas-liquid Ratio and Reynolds Number (횡단 유동장의 기액비 및 레이놀즈수 변화에 따른 외부혼합형 이상유체 제트의 액적크기 및 체적유속 특성)

  • Kim, Jong-Hyun;Lee, Bong-Soo;Koo, Ja-Ye
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.75-81
    • /
    • 2009
  • A study was performed to investigate the characteristics of two-phase jet injected into subsonic cross-flow using the external mixed gas blast two-phase nozzle. The shadowgraph method was adopted for the cross-flow jet visualization and PDPA system was used to measure droplet size, velocity, and volume flux. The atomization of two-phase jet is initially determined according to gas to liquid mass flow-rate ratio and the Reynolds number of cross-flows. The highest penetration trajectories of two-phase jet injected into cross-flow are governed by the momentum ratio at subsonic cross-flow. As GLR of two-phase jet injected into cross-flow increases, the droplet size decreases and the distribution area of volume flux increases. The distribution of volume flux that influenced by the counter vortex pair at the downstream of cross-flow is symmetric in shape of horseshoe.

Improvement of Starting Performance in Supersonic Exhaust Diffuser with Second Throat for High Altitude Simulation (2차목에 의한 고고도 모사용 초음속 디퓨져 시동성능 향상)

  • Park, Sung-Hyun;Park, Byung-Hoon;Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.321-327
    • /
    • 2008
  • Performance characteristics of the axi-symmetric supersonic exhaust diffuser (SED) with a second throat are numerically investigated. Computational strategy repeats those for a straight exhaust diffuser with zero-secondary flows. Renolds-Average Navier-Stokes equations with a standard ${\kappa}-{\varepsilon}$ turbulence model incorporated with standard wall function are solved to simulate the diffusing evolutions of the nozzle plume. The methodology is validated with accuracy. To predict the improvement of starting performance by second throat diffuser, diffuser characteristic curve due to the SED equipped with the second throat is speculated with respect to that of a straight area type as a function of nozzle stagnation pressure. Principal physics caused by the of the second throst is also addressed in terms of a second throat area ratio.

  • PDF

Effect of Rear-Vortex of a Convergent-Divergent Duct on the Flow Acceleration Installed in a Vertical Structure (수직구조물 후방의 와류현상이 구조물에 설치된 벤투리관의 유체가속 효과에 미치는 영향에 관한 해석 연구)

  • Chung, Kwang-Seop;Kim, Chul-Ho;Cho, Hyun-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.94-100
    • /
    • 2013
  • A convergent-divergent nozzle or venturi nozzle has been used to accelerate the wind speed at its throat. The wind speed at the throat is inversely proportional to its area according to the continuity equation. In this numerical study, an airflow phenomena in the venturi system placed at a vertical structure was investigated to understand the vortex effect occurred at the rear-side of the vertical structure on the air speed increment at the throat of the venturi system. For this study, a venturi system sized by $20(m){\times}20(m){\times}6(m)$ was modelled and the area ratio(AR) of the model venturi was 2.86. To see the vortex effect on the air flow acceleration in the venturi throat, two different boundary conditions was defined From the study, it was found that the pressure coefficient(CP) of the venturi system with the vortex formed at the exit of the venturi was about 2.5times of the CP of the venturi system without the vortex effect. The velocity increment rate of the venturi system with the vortex was 61% but 9.5% only at the venturi system without the vortex. Conclusively, it can be said that the venturi system installed in a vertical structure has very positive effect on the flow acceleration at its throat due to the vortex formed at the rear-side of the vertical structure.