• Title/Summary/Keyword: Nozzle Throat

Search Result 208, Processing Time 0.025 seconds

Analysis of Characteristics of Second Throat Exhaust Diffuser for Simulating High-Altitude of Liquid Rocket Engine by Using Computational Fluid Dynamics (CFD를 이용한 액체로켓엔진 고고도 모사용 2차목 초음속 디퓨져 특성 해석)

  • Moon, Yoon-Wan;Lee, Eun-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.968-969
    • /
    • 2011
  • The characteristics of second throat exhaust diffuser were investigated by using CFD. Because the second throat exhaust diffuser(STED) is known as the effective device for simulating high-altitude circumstance more than a cylindrical supersonic diffuser STED was analyzed. The back pressure around nozzle was reduced by entrance size of STED and it was observed that the initial strong shock was the weak oblique shock along the diffuser. Therefore the static pressure at nozzle exit was recovered as the ambient pressure and the STED worked well.

  • PDF

Improvement of Starting Performance in Supersonic Exhaust Diffuser with Second Throat for High Altitude Simulation (2차목에 의한 고고도 모사용 초음속 디퓨져 시동성능 향상)

  • Park, Sung-Hyun;Park, Byung-Hoon;Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.321-327
    • /
    • 2008
  • Performance characteristics of the axi-symmetric supersonic exhaust diffuser (SED) with a second throat are numerically investigated. Computational strategy repeats those for a straight exhaust diffuser with zero-secondary flows. Renolds-Average Navier-Stokes equations with a standard ${\kappa}-{\varepsilon}$ turbulence model incorporated with standard wall function are solved to simulate the diffusing evolutions of the nozzle plume. The methodology is validated with accuracy. To predict the improvement of starting performance by second throat diffuser, diffuser characteristic curve due to the SED equipped with the second throat is speculated with respect to that of a straight area type as a function of nozzle stagnation pressure. Principal physics caused by the of the second throst is also addressed in terms of a second throat area ratio.

  • PDF

An Experimental Study of the Variable Sonic/supersonic Ejector Systems (가변형 음속/초음속 이젝터 시스템에 관한 실험적 연구)

  • Lee Jun Hee;Kim Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.554-560
    • /
    • 2005
  • A new method to improve the efficiency of a hydrogen fuel cell system was introduced by using variable sonic/supersonic ejectors. To obtain the variable area ratio of the nozzle throat to ejector throat which controls the mass flow rate of the suction flow, the ejectors used a movable cylinder inserted into a conventional ejector-diffuser system. Experiments were carried out to understand the flow characteristics inside the variable ejector system. The secondary mass flow rates of subsonic and supersonic ejectors were examined by varying the operating pressure ratio and area ratio. The results showed that the variable sonic/supersonic ejectors could control the recirculation ratio by changing the throat area ratio, and also showed that the recirculation ratio increased fur the variable sonic ejector and decreased for the variable supersonic ejector, as the throat area ratio increases.

A Study on Dynamic Behavior for After-end Igniter Mount (후방형 점화기 마운트 동적 거동 연구)

  • Kwon, Tae-Hoon;Choi, Young-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.227-230
    • /
    • 2008
  • Igniter system of Solid Rocket Motor is classfied as Forward-end type and After-end type. Forward-end type is used for sustentation of combustion pressure by nozzle plug. But After-end type is used for sustentation of combustion pressure by igniter mount. Igniter Mount is assembled on nozzle throat. Igniter mount holds combustion pressure and igniter release energy. A study has qualificated result of Dynamic behavior for After-end igniter mount of Static Firing Test and Finite element method.

  • PDF

Experimental Study on the Development of Nozzle-Type Diffusers for Submersible Aeration Process (수중폭기용 노즐형 산기관 개발에 관한 실험적 연구)

  • Rhim, Dong-Ryul;Cho, Nam-Hyo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.604-608
    • /
    • 2004
  • Experimental study was conducted to increase the oxygen transfer efficiency of air diffusers in clean water. By measuring the bubble size from the bubbly two-phase flow visualization with several air diffusers the size of air bubbles near the top surface of aeration tank seems to be independent on the diffuser types. Considering design parameters for the better breakup of larger bubbles around the air diffusers, advanced conceptual air diffusers using nozzle-type throat showing the higher oxygen transfer efficiencies were made.

  • PDF

Performance Analysis of the Pintle Thruster Using 1-D Simulation -I : Steady State Characteristics (1-D 시뮬레이션을 활용한 핀틀추력기의 성능해석 -I : 정상상태 특성)

  • Kim, Jihong;Noh, Seonghyeon;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.304-310
    • /
    • 2015
  • Pintle thrusters use pintle stroke to change nozzle throat area, and this controls thrust. Using MATLAB, one-dimensional simulation has been investigated and the results are compared to those of cold flow tests and computational fluid dynamics for the pintle thruster of Chungnam National University. The prediction based on one-dimensional flow theory shows good agreement with measurements for chamber pressure, but deviates for thrust, partly because of nozzle wall separation. Computational results show that nozzle wall separation occurs at an early stage of nozzle expansion, near the design nozzle throat, for the course of pintle strokes. Empirical thrust prediction incorporates nozzle wall separation, and thus 1-D simulation using empirical thrust prediction showed good results for an early stage of pintle stroke.

Supersonic Plug Nozzle Design and Comparison to the Minimum Length Nozzle Configuration

  • Zebbiche, Toufik;Youbi, ZineEddine
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2006
  • A method to design the contour and conception of a plug nozzle of arbitrary shape, but specified exit flow conditions is presented. Severals shapes can be obtained for exit Mach number by changing the specific heats ratio. The characteristics of the nozzle in terms of length, weight and pressure force exerted on the wall are compared to the Minimum Length Nozzle and found to be better. Our field of study is limited to the supersonic mode to not to have the dissociation of the molecules. The design method is based on the use of the Prandtl Meyer function of a perfect gas. The flow is not axial at the throat, which may be advantageous for many propulsion applications. The performance benefits of the plug nozzle compared to the Minimum Length Nozzle are also presented.

The Comparison of Experimental Results of Liquid Ejector Performance to Predictions by the Computer Aided Design Program (液休용 이젝터 性能에 관한 CAD와 實驗結果와의 比較)

  • 김경근;김명환;홍영표;고상철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.520-527
    • /
    • 1988
  • Liquid ejectors are widely used as marine pumps, inducer stage for the boiler feed water pump, boiler recirculating pump, cooling water recirculating pump in boiling water type nuclear reactor and a deep well pump, because of their high working confidence and simplicity. Furthermore, it requires only a modest net positive suction head for cavitation-free operation and it can be installed in remote location from mechanical power source. It is not easy to presume the friction losses, because it is complicately affected by area ratio, flowrate ratio, nozzle spacing, throat length, shape of liquid ejector and so on. Therefore, the optimization of liquid ejector design is still dependent, to a large extent, on the experimental results and empirical procedures. On the design of the liquid ejector, the area ratio and the nondimensional throat length are the most important design factors among the mentioned above. In this experiment, the effects of the area ratio and the nondimensional throat length to ejector efficiency are carried out systematically by the combination of 4 kinds of motive nozzle and 2 kinds of throat length. In this paper, the present experimental results are compared with the calculated ones by the previous computer aided design program based on one dimensional flow equation. And also, an empirical equation for the working limit of liquid ejector is reported.

Effect of Rear-Vortex of a Convergent-Divergent Duct on the Flow Acceleration Installed in a Vertical Structure (수직구조물 후방의 와류현상이 구조물에 설치된 벤투리관의 유체가속 효과에 미치는 영향에 관한 해석 연구)

  • Chung, Kwang-Seop;Kim, Chul-Ho;Cho, Hyun-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.94-100
    • /
    • 2013
  • A convergent-divergent nozzle or venturi nozzle has been used to accelerate the wind speed at its throat. The wind speed at the throat is inversely proportional to its area according to the continuity equation. In this numerical study, an airflow phenomena in the venturi system placed at a vertical structure was investigated to understand the vortex effect occurred at the rear-side of the vertical structure on the air speed increment at the throat of the venturi system. For this study, a venturi system sized by $20(m){\times}20(m){\times}6(m)$ was modelled and the area ratio(AR) of the model venturi was 2.86. To see the vortex effect on the air flow acceleration in the venturi throat, two different boundary conditions was defined From the study, it was found that the pressure coefficient(CP) of the venturi system with the vortex formed at the exit of the venturi was about 2.5times of the CP of the venturi system without the vortex effect. The velocity increment rate of the venturi system with the vortex was 61% but 9.5% only at the venturi system without the vortex. Conclusively, it can be said that the venturi system installed in a vertical structure has very positive effect on the flow acceleration at its throat due to the vortex formed at the rear-side of the vertical structure.

Computational Study of the Axisymmetric, Supersonic Ejector-Diffuser Systems

  • Kim, Heuy-Dong;Lee, Young-Ki;Seo, Tae-Won;Raghunathan, Srinivasan
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.520-524
    • /
    • 2000
  • A ejector system is one of the fluid machinery, which has been mainly used as an exhaust pump or a vacuum pump. The ejector system has often been pointed out to have only a limited efficiency because it is driven by pure shear action and the mixing action between primary and secondary streams. In the present work, numerical simulations were conducted to investigate the effects of the geometry and the mass flow ratio of supersonic ejector-diffuser systems on their mixing performance. A fully implicit finite volume scheme was applied to solve the axisymmetric Navier-Stokes equations, and the standard ${\kappa}-{\varepsilon}$ turbulence model was used to close the governing equations. The flow fields of the supersonic ejector-diffuser systems were investigated by changing the ejector throat area ratio and the mass flow ratio. The existence of the second throat strongly affected the shock wave structure inside the mixing tube as well as the spreading of the under-expanded jet discharging from the primary nozzle, and served to enhance the mixing performance.

  • PDF