• Title/Summary/Keyword: Nozzle Space

Search Result 274, Processing Time 0.02 seconds

Investigation of Pintle Shape Effect on the Nozzle Performance (핀틀 형상이 노즐 성능에 미치는 영향에 관한 연구)

  • Kim, Joung-Keun;Park, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.790-796
    • /
    • 2008
  • Typical solid rocket motors have a fixed propellant grain shape and nozzle throat size resulting in a fixed motor thrust. Pintle nozzle has been suggested as a means of providing variable thrust while maintaining the inherent advantage of solid rocket motors. In this study, the pintle shape effect on nozzle performance is investigated using experimental-aided Computational Fluid Dynamics(CFD). The pintle shape is modified by a principle of monotony. CFD analysis is performed using Fluent by applying the turbulent model. This analysis indicates that nozzle thrust and pintle load are influenced by change of nozzle shock pattern and flow separation due to pintle shape and there exists a high-performing pintle shape.

Thrust modulation performance analysis of pintle-nozzle motor (핀틀 노즐형 로켓 모타의 추력 조절 성능에 관한 연구)

  • Kim, Joung-Keun;Park, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.392-398
    • /
    • 2009
  • Theoretical thrust equations for the diverse nozzle expansion condition were derived. By using the obtained thrust equations, parametric studies were carried out to estimate the effect of pressure exponent, minimum operation pressure, ambient pressure and extinguishment pressure on thrust modulation performance in pintle-nozzle solid rocket motors. Analysis results showed that thrust turndown ratio can be easily attained by small nozzle-throat area variation at high pressure exponent, low minimum operation pressure, high ambient pressure and high extinguishment pressure condition. At those conditions, the highest chamber pressure to obtain the intended thrust turndown ratio can be minimized.

A study on the pintle-tip shapes effect of nozzle flow using cold-flow test (핀틀 형상이 노즐 유동에 미치는 영향에 대한 실험적 연구)

  • Kim, Joung-Keun;Park, Jong-Ho;Lee, Jong-Hoon;Jeon, Min-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.985-991
    • /
    • 2010
  • The objective of this work was to investigate the pintle-tip shape effect on nozzle flow and thrust by cold flow test. When nozzle throat area was decreased by pintle movement, chamber pressure was increased monotonously but thrust was increased differently according to every pintle-tip shape. At the same chamber pressure and nozzle throat area, thrust of convex pintle-tip shape was mostly larger than that of concave one. Nozzle wall pressure distribution and magnitude of pintle-tip load depended on the pintle-tip shape, pintle position and nozzle throat area.

Technology and Patent Trends of Altitude Compensation Nozzles (고도보정 노즐의 기술 및 특허 동향)

  • Choi, Junsub;Moon, Taeseok;Choi, Jongin;Park, Sanghyeon;Kim, Hansol;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.8
    • /
    • pp.662-670
    • /
    • 2018
  • The altitude compensation nozzle is a nozzle designed for optimum performance at all altitudes. A method of improving the specific impulse of the space launch vehicle is a method of improving the characteristic exhaust velocity which is a characteristic of the combustion chamber and a method of improving the thrust coefficient which is a characteristic of the nozzle. The altitude compensation nozzle enables improvement of the performance of the space launch vehicle by improving the nozzle performance for the same combustor. Research on altitude compensation nozzles has been actively carried out in the DLR in Germany and is being carried out in advanced countries such as the US, Russia, UK, Australia and Japan. In this paper, the technology trends and patent trends of altitude compensation nozzles are investigated and summarized. Based on this, the technical trends of altitude compensation nozzles is grasped and utilized as basic data for the study on the performance improvement of a launch vehicle.

A Study on Jet Characteristic using a Coanda Effect in a Constant Expansion Rate Nozzle (코안다 효과를 이용한 제트 특성에 관한 연구)

  • Lee, Dong-Won;Lee, Sak;Kim, Byung-Ji;Kwon, Soon-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.706-713
    • /
    • 2007
  • The jet structure issuing from a conventional convergent nozzle of variable expansion rate is compared with the result from the nozzle of a constant expansion rate using a normal type annular slit. In experiments, to investigate the jet characteristics between the two cases of jet, the mean velocity of nozzle exit is fixed to be 90m/s, the pressures along the jet axis and radial directions are measured by a scanning valve system moving with 3-axis auto-traverse unit, and the velocity distribution obtained by calculation from the measured static and total pressures is compared. Also to obtain the highly stable and convergence jets, it is turned out that the flow through a nozzle of constant expansion rate using the Coanda effect with an annular slit is the most preferable than that case through variable expansion rate nozzle. Furthermore, it is found that the pressure drop along the nozzle for the constant expansion rate nozzle is small relatively against to the case of variable expansion rate nozzle.

Numerical Study of Separated Nozzle Flows for Various Pressure Ratios (압력비에 따른 박리 노즐 유동의 수치적 해석)

  • Kim, Hui-Kyung;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.1-9
    • /
    • 2002
  • Axisymmetric separated flows in a converging-diverging conical nozzle are investigated through numerical simulations for various pressure ratios. We employ AUSM scheme for spatial derivatives and Pulliam's 2nd order subiteration time stepping scheme for implicit time integration. Numerical results indicate that the separated flow structures are very complex when compared to the simple quasi-one dimensional flow. Depending on the pressure ratio, the flow within the nozzle is either separated or non-separated. Various separated flow patterns with distinctive features are illustrated and discussed in detail.

Design and Experimental Verification of Two Dimensional Asymmetric Supersonic Nozzle (이차원 비대칭형 초음속 노즐 설계와 실험적 검증)

  • Kim, Chae-Hyoung;Sung, Kun-Min;Jeung, In-Seuck;Choi, Byoung-Il;Kouchi, Toshinori;Masuya, Goro
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.899-905
    • /
    • 2009
  • Most supersonic-flow test facility has axisymmetric nozzles or two-dimensional symmetric nozzles. Compared to these nozzles, a two-dimensional asymmetric nozzle has advantages of reducing low cost for various Mach number testing and undesirable flow structure such as shock wave reflection because the nozzle part can be directly connected to the test section part in this type of nozzle. The two-dimensional asymmetric nozzle, which was Mach number 2, was designed for supersonic combustion experiment. And it was verified with the numerical analysis and visualization of Mach wave. This study suggested the practical method for design and verification of supersonic two dimensional asymmetric nozzles.

The stydy on determination method of initial optimal nozzle expansion ratio in pintle solid rocket motor (핀틀 로켓의 초기 최적 노즐 팽창비 결정 방법 연구)

  • Kim, Joung-Keun;Lee, Young-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.744-749
    • /
    • 2011
  • In this study, determination method of initial optimal nozzle expansion in pintle rocket was investigated. The initial optimal initial nozzle expansion was decided by maximizing the mass-averaged thrust coefficient that is calculated from thrust coefficient of minimum and maximum chamber pressure. The determination of initial optimal initial nozzle expansion was equivalent to that of the minimum propellant mass which was required for obtaining the desired mission performance. The highest pressure, thrust turndown ratio and total impulse ratio effected on the initial optimal nozzle expansion. Among them, total impulse ratio had great influence on the initial optimal nozzle expansion.

A Performance Characteristics of the Thruster Nozzle for Attitude Control of Space Vehicle According to Flight Altitude (우주비행체 자세제어용 추력기 노즐의 비행고도 변이별 추력성능 특성 해석)

  • Kam, Ho-Dong;Choi, Hyun-Ah;Kim, Jeong-Soo;Bae, Dae-Seok;Kim, In-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.167-171
    • /
    • 2012
  • A computational analysis of nozzle flow is conducted to investigate effects of the flight altitude on thrust performance. Reynolds-averaged Navier-Stokes equation with k-${\omega}$ SST(Shear Stress Transport) turbulence model is employed to simulate the nozzle flow in various altitude conditions, where continuum mechanics is to be valid. Thrust performance of the nozzle is exceedingly poor upto 10 km of flight altitude because of the irreversible phenomena such as shock and/or flow separation occurring inside the nozzle, whereas it is restored to the nominal value as the altitude is attained higher than 30 km.

  • PDF

Research Trends of an E-D Nozzle for Altitude Compensation (고도 보정용 확장-굴절(E-D) 노즐의 국외 연구 동향)

  • Moon, Taeseok;Park, Sanghyeon;Choi, Junsub;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.10
    • /
    • pp.844-854
    • /
    • 2017
  • The Expansion-Deflection(E-D) nozzle is a nozzle that has a performance gain through the altitude compensation effect by changing the effective area within the nozzle according to the altitude. An E-D nozzle has been known to reduce the length of the nozzle and achieve the payload gain of the launch vehicle. Due to the potential advantages of an E-D nozzle, related research has been carried out in the United Kingdom, Germany, Australia and Europe etc. In the UK, the flow characteristics of the E-D nozzle and the performance comparison with the dual-bell nozzle which is altitude compensation nozzle were studied. In order to understand the transition characteristics of the E-D nozzle in DLR, the transition characteristics according to the nozzle pressure ratio change were analyzed. In Europe, numerical study using the E-D nozzle concept on upper stage of the launch vehicle Ariane 5 ESC-B was carried out to confirm the possibility of payload gain according to the nozzle length reduction. In this paper, research trends of an E-D nozzle performed outside the country are classified and analyzed according to their characteristics and utilized as basic data of E-D nozzle research in the future.