• Title/Summary/Keyword: Nozzle L/D

Search Result 106, Processing Time 0.022 seconds

An experimental study on development of water mist fire-fighting systems for Ro-Ro spaces (Ro-Ro 구역용 미분무 소화설비의 개발을 위한 실험적 연구)

  • Kwark, Ji-Hyun;Kim, Young-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.946-952
    • /
    • 2013
  • Large scale fire tests were conducted to develop water mist nozzles as a component of fixed water- based fire fighting systems for Ro-Ro spaces and special category spaces. Fire scenarios for this system consist of two cases which are for cargo fire in a simulated truck and for passenger vehicle fire, and each case has 3 different tests according to the position between fixed water mist nozzles and fire source. Every experiment proceeded for 30 minutes and acceptance criteria were based on gas temperature, fuel package's damage and ignition of targets. This study primarily dealt with the experimental results of cargo fire and focused on fire suppression capability in accordance with discharge pressure, flow rate and flow characteristics like swirl and penetration of the developed water mist nozzles. It appeared that low pressure water mist nozzles with about 40 L/min were able to control fire occurred in Ro-Ro spaces.

A Study on the Combustion Characteristic of Paraffin Fuel Based Hybrid Rocket with the Post Chamber L/D Ratio (하이브리드 로켓용 파라핀 연료의 후연소실 L/D비 변화에 따른 연소 특성 연구)

  • Ko, Suhan;Lee, Donghee;Kwon, Sejin;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.19-26
    • /
    • 2019
  • Paraffin fuels usually have low combustion efficiency due to discharged unburnt droplets from the nozzle. Therefore, optimization of the post-chamber is becoming an important factor for performance. In this study, combustion experiments were conducted by changing either the length or diameter of the post-chamber to reveal the combustion behavior of paraffin fuel for hybrid rocket. As a result, the combustion efficiency improved due to the increase of the residence time as the post-chamber length increased. On the other hand, it is found that the influence of the diameter change was not significant compared with the case of variable post-chamber length.

Fabrication of PCL Scaffolds According to Various Pore Patterns Using Polymer Deposition System and Design of Experiments (폴리머 적층 시스템과 실험계획법을 이용한 다양한 공극 패턴에 따른 PCL 인공지지체의 제작 연구)

  • Sa, Min-Woo;Choi, Sun-Woong;Lee, Jae-Wook;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.645-653
    • /
    • 2017
  • In bone tissue engineering, polycaprolactone (PCL) is one of the most widely used biomaterials in the manufacturing of scaffolds as a synthetic polymer having biodegradability and biocompatibility. The strut width in the fabrication of scaffolds is an important part of tissue regeneration in in-vitro and in-vivo experiments, because it affects not only the pore size but also the porosity. In this study, we used polymer deposition system (PDS) and design of experiments (DOE) to explore the optimal process conditions to achieve a systematic and efficient scaffold manufacturing process, using temperature, pressure, scan velocity, and nozzle tip height as the parameters for the experiments. The aim of this research was to fabricate a 3D PCL scaffold having a uniform strut width of $150{\mu}m$ using DOE; it was proved that the strut width was constant in all the experimental groups by fabricating the PCL scaffolds according to various pore patterns as well as one pore pattern.

Optimization of ejector for swirl flow using CFD (CFD를 이용한 회전 운동을 하는 이젝터의 최적화)

  • Kang, Sang-Hoon;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.31-37
    • /
    • 2017
  • This paper investigates the effect of the rotational motion of a driving fluid generated by a rotational motion device at the inlet of a driving nozzle for a gas-liquid ejector, which is the main device used for ozonated ship ballast water treatment. An experimental apparatus was constructed to study the pressure and suction flow rate of each port of the ejector according to the back pressure. Experimental data were acquired for the ejector without rotational motion. Based on the data, a finite element model was then developed. The rotational motion of the driving fluid could improve the suction efficiency of the ejector based on the CFD model. Based on the CFD results, structure optimization was performed for the internal shape of the rotation induction device to increase the suction flow rate of the ejector, which was performed using the kriging technique and a metamodel. The optimized rotation induction device improved the ejector efficiency by about 3% compared to an ejector without rotational motion of the driving fluid.

Stress Distributions at the Dissimilar Metal Weld of Safety Injection Nozzles According to Safe-end Length and SMW Thickness (안전단 길이 및 동종금속용접부 두께 변화에 따른 안전주입노즐 이종금속용접부의 응력분포)

  • Kim, Tae-Jin;Jeong, Woo-Chul;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.979-984
    • /
    • 2015
  • In the present paper, we evaluate the effects of the safe-end length and thickness of the similar metal weld (SMW) of safety injection nozzles on stress distributions at the dissimilar metal weld (DMW). For this evaluation, we carry out detailed 2-D axisymmetric finite element analyses by considering four different values of the safe-end length and four different values of the thickness of SMW. Based on the results obtained, we found that the SMW thickness affects the axial stresses at the center of the DMW for the shorter safe-end length; on the other hand, it does not affect the hoop stresses. In terms of the safe-end length, the values of the axial and hoop stresses at the inner surface of the DMW center increase as the safe-end length increases. In particular, for the cases considered in the present study, the stress distributions at the DMW center can be categorized according to certain values of safe-end length.

A Numerical Study on the Geometry Optimization of Internal Flow Passage in the Common-rail Diesel Injector for Improving Injection Performance (커먼레일 디젤인젝터의 분사성능 개선을 위한 내부유로형상 최적화에 관한 수치적 연구)

  • Moon, Seongjoon;Jeong, Soojin;Lee, Sangin;Kim, Taehun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.91-99
    • /
    • 2014
  • The common-rail injectors are the most critical component of the CRDI diesel engines that dominantly affect engine performances through high pressure injection with exact control. Thus, from now on the advanced combustion technologies for common-rail diesel injection engine require high performance fuel injectors. Accordingly, the previous studies on the numerical and experimental analysis of the diesel injector have focused on a optimum geometry to induce proper injection rate. In this study, computational predictions of performance of the diesel injector have been performed to evaluate internal flow characteristics for various needle lift and the spray pattern at the nozzle exit. To our knowledge, three-dimensional computational fluid dynamics (CFD) model of the internal flow passage of an entire injector duct including injection and return routes has never been studied. In this study, major design parameters concerning internal routes in the injector are optimized by using a CFD analysis and Response Surface Method (RSM). The computational prediction of the internal flow characteristics of the common-rail diesel injector was carried out by using STAR-CCM+7.06 code. In this work, computations were carried out under the assumption that the internal flow passage is a steady-state condition at the maximum needle lift. The design parameters are optimized by using the L16 orthogonal array and polynomial regression, local-approximation characteristics of RSM. Meanwhile, the optimum values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance (ANOVA). In addition, optimal design and prototype design were confirmed by calculating the injection quantities, resulting in the improvement of the injection performance by more than 54%.