• 제목/요약/키워드: Nozzle Hole Diameter

검색결과 102건 처리시간 0.024초

직접 디젤 연료분사계의 분사 특성과 기관 성능 개선에 관한 연구 (Injection Feature and Engine Performance Improvement of the Direct Diesel Fuel Injection System)

  • 윤천한;김경훈
    • 한국분무공학회지
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 2002
  • This study has focused on using fuel injections as variables for measuring performance and reducing exhaust gas in turbo-charger diesel engine. In experiments, we changed nozzle hole diameter, diameter of an injection pipe, and injection timing as variable. The results show that torque. fuel consumption and smoke are reduced as nozzle hole diameter decreases, while NOx increases. When the diameter of injector is reduced, torque, fuel consumption and smoke are deteriorated, but NOx is decreased. In addition, when the time for injection is advanced. torque, fuel consumption and smoke are improved, but the density of NOx is increased.

  • PDF

비예혼합 제트화염에서 고주파수의 노즐 구멍음에 의한 부상화염 혼합성능에 관한 연구 (A Study on the Mixing Capacity of Lifted Flame by the Nozzle Hole-tone of High Frequency in Non-premixed Jet Flames)

  • 조준익;이기만
    • 한국가시화정보학회지
    • /
    • 제9권4호
    • /
    • pp.35-40
    • /
    • 2011
  • An experimental investigation of the characteristic of non-premixed lifted flames with nozzle hole-tone of high-frequency has been performed. Before the fuel was supplied to nozzle, the fuel was supplied through a burner cavity which was located under the nozzle. The fuel passed through the excitation cavity under the influence of the high-frequency affects the lifted flame characteristics. The measurements were performed in flow range that occurs lifted flame and blow out. When the high-frequency is generated from burner cavity, the lifted length became shorter, and noise reduced comparing to unexcitation case. Additionally, operating flow range was increased and diameter of flame base became smaller with high-frequency effect. Through this experiments, it's ascertained that the high-frequency excitation can be adopted with effective method for flame stability and noise reduction.

燃料噴霧特性 에 관한 硏究 (A Study on the Characteristics of Fuel Spray)

  • 진호근;이창식;서정일
    • 대한기계학회논문집
    • /
    • 제6권3호
    • /
    • pp.256-260
    • /
    • 1982
  • This paper presents the characteristics of fuel spray in a diesel engine. In this paper, in order to obtain spray droplet size in a diesel engine, water was injected into the cylinder at room temperature and pressure by injection system. Spray droplet size was measured by liquid immersion technique with a lubricant used as an immersion liquid for spray water from injection nozzle. In this experiment, single hole type throttle nozzle are used at same operating conditions, which included opening pressure of nozzle, fuel delivery, and injection speed. Sauter mean diameter decrease with the increase of injection pressure and decrease in injection nozzle diameter. The rate of spray penetration increased with increasing injection pressure and diameter of injection nozzle at the constant spray conditions.

단일 유로를 갖는 와류발생기의 에너지분리 특성 (Energy Separation Characteristics of Single Hole Vortex Generator)

  • 유갑종;장준영;최인수
    • 대한기계학회논문집B
    • /
    • 제25권8호
    • /
    • pp.1005-1012
    • /
    • 2001
  • When vortex tubes are applied to enhance the coefficient of performance of refrigeration system, the smaller one is preferable. However, the existing vortex generator with a nozzle hole diameter of 0.5mm was not suitable due to chocking of the nozzle hole. Therefore, experimental investigation was made to find an appropriate geometry of vortex generator, which could give a comparable effect of energy separation to commercial ones without chocking problem. The tested vortex generators were tangential and spiral types, which had single inducing channel with larger cross-sectional area than that of conventional multi-hole ones. The experimental result showed that the performance of the spiral type was better than that of the tangential one. As a small size of spiral one, the diameter of cold-end orifice is proposed to an half of tube diameter for the application to refrigeration system, while cold mass fraction ratio is 0.5∼0.6 for a desirable operation.

디젤기관의 연소에 미치는 분사계의 영향 (Effects of the fuel injection system on combustion in a diesel engine)

  • 권순익;김완
    • 오토저널
    • /
    • 제15권1호
    • /
    • pp.37-44
    • /
    • 1993
  • Fuel injection system is an important tool in the exhaust emission and performance of a diesel engine. Effects of the fuel injection system in diesel combustion was investigated experimentally by measuring the performance and analyzing the combustion phenomena in a D.I. diesel engine. The selected injection parameters were nozzle opening pressure, nozzle projection length, and nozzle spray angle. From the measured results, it is shown that the fuel injection pipe diameter is an effective means to improve engine performance in a middle and high speed range and the 2 stage spring nozzle holder has the advantage of increasing the engine performance due to the initial injection pressure in a low speed range. It has been also shown that increasing nozzle opening pressure resulted in decrease in smoke, but increase in NO$_{x}$ from the engine.e.

  • PDF

폼 분무 노즐 방사 분포 및 폼의 열적 특성 연구 (Thermal Characteristics of Foams and Discharge of Fire-Protection Foam Spray Nozzle)

  • 김홍식;김윤제
    • 대한기계학회논문집B
    • /
    • 제29권1호
    • /
    • pp.151-158
    • /
    • 2005
  • A characteristic of discharge for a foam spray nozzle with various parameters was investigated. The discharge patterns from a fire foam spray nozzle are important to evenly spray over a maximum possible floor area. Two parameters of a foam spray nozzle were chosen, and compared with those from the standard one. Also, in order to evaluate the performance of discharged foam agents used to protect structures from heat and fire damages, the thermal characteristics of fire-protection foams were experimentally investigated. A simple repeatable test for fire-protection foams subjected to fire radiation was developed. This test involves foam generation equipment, a fire source for heat generation, and data acquisition techniques. Results show that the bubble size of foam is increased by large inside diameter of orifice or closed air hole, but phenomenon of discharge angle and expansion ratio is opposite. For the case of the open air hole, liquid film of a circular cone discharges with formation, growth, split and fine grain. In case of the closed air hole, a pillar of foam solution discharges with that. Though the temperature gradient in the foam increases with increased foam expansion ratio. it is not change with increased intensity of heat flux.

Gun-type Nozzle의 분무입자(噴霧粒子) 미립화(微粒化)에 관(關)한 연구(硏究) (Study on the Improvement of Atomization of Droplet for Gun-type Nozzle)

  • 이상우
    • 농업과학연구
    • /
    • 제5권1호
    • /
    • pp.29-34
    • /
    • 1978
  • Gun-type nozzle에 있어서 입자(粒子)의 미립화(微粒化)를 개선(改善)코저 절선속도(切線速度)를 증가(增加)하는 방법(方法)의 일환(一環)으로 Screw 중자(中子)를 제작(製作) 장치(裝置)한 Nozzle로 실내(室內)에서 분무실험(噴霧實驗)한 결과(結果) 다음과 같은 결론(結論)을 얻었다. 분무입자(噴霧粒子)의 직경(直徑)이 클수록 분무도달거리(噴霧到達距離)는 컸으며 Screw중자(中子)를 장치(裝置)하였을 때가 장치(裝置)하지 않았을 때에 비(比)하여 분무입자(噴霧粒子)의 미립화(微粒化)는 현저히 양호(良好)하였고 분무도달거리(噴霧到達距離)는 분구(噴口)가 소구경시(小口徑時)에는 거의 차이(差異)가 없었으나 분구(噴口)가 증대(增大)함에 따라서 현저히 짧아졌다. 최고(最高) 도달거리(到達距離) 지점(地點)부터 1~2m의 분무도달거리(噴霧到達距離)에 있어서는 기류부유이동(氣流浮遊移動)의 현상(現象)으로 분무입자(噴霧粒子)가 작아졌다.

  • PDF

분사노즐 출구 각도 변화가 분사특성에 미치는 영향에 관한 계산적 고찰 (Computational Study on The Effect of Injection Nozzle Hole Exit Angle Variation on Injection Characteristics)

  • 김주연;박권하;이승호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권8호
    • /
    • pp.997-1002
    • /
    • 2012
  • 박용기관에서의 배기규제는 단계별로 강화되고 있으며 연소실 내외의 종합대책이 요구되고 있다. 기관 내부의 연소 특성은 배기배출 특성과 밀접한 관계가 있으며 분사밸브의 노즐과 노즐 홀 특성은 연소에 중요한 영향을 미친다. 분무 특성을 향상시키기 위한 노즐에 관한 연구는 입구형상, 직경 등에 집중되고 있으며, 노즐 출구의 형상에 대해서는 연구가 부족하다. 본 연구에서는 노즐 출구의 형상을 0도에서 90도까지 변화시키면서 계산을 수행하였다. 분사 압력, 질량유량, 유속, 유동특성 등을 종합하였을 때 노즐 출구 각도를 30도와 60도 사이로 하였을 때가 가장 효과적일 것이라 사료된다.

에어노즐의 소음저감 대책에 관한 연구 (An Experimental Study on Decrease of Noise for Air Nozzle)

  • 전승태;김종현;이근오
    • 한국안전학회지
    • /
    • 제18권4호
    • /
    • pp.51-56
    • /
    • 2003
  • The goal of this study is to show the way to decrease the noise from air nozzles. The variables of this test are the shapes of air nozzles, air flow rate and the distance between a reflection plate and a nozzle tip. This experiment is aimed to find the most appropriate condition to minimize the noise. These are the results. If diameter ratio is more than 12:8, noise level increases by over 10 dB(A) regradless of the distance between a reflection plate and a nozzle and the existence of a reflection plate. And when $L_2$ of a nozzle is 5mm long, noise level rise relatively highly. So, it is strongly recommended that $L_2$ should be manufactured more than 10mm. The reason for a high intensity noise is that when diameter ratio is more than 12:8, the diameter of a nozzle tip($D_2$) turns small drastically, which increases the air velocity. It is assumed that when the vortes is great around the spots where a nozzle hole is suddenly smaller, great turbulent flow increases much noise.