• Title/Summary/Keyword: Nozzle Dispensing

Search Result 21, Processing Time 0.033 seconds

High Throughput Dispensing Using Multi Port Jet

  • Ahmadi, Mani;Babiarz, Alec;Suriawidjaja, Floriana;Jardins, Stephen Des
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1175-1178
    • /
    • 2008
  • Flat panel display manufacturers are always investigating new techniques to improve productivity and reliability. For fluid dispense processes, Jet dispensing has shown benefits over traditional needle dispensing. Recent advancements in nozzle design and construction techniques enable jet dispensing capabilities far exceeding what has been previously achieved.

  • PDF

Characteristics of Surface Lamination according to Nozzle Position in Liquid Direct Writing SFF (액체 재료 직접주사방식 SFF에서 노즐 위치에 따른 적층 특성)

  • Jung, Hung Jun;Lee, In Hwan;Kim, Ho-Chan;Cho, Hae Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.41-48
    • /
    • 2014
  • Direct writing(DW) is a method of patterning materials to a substrate directly, without a mask. It can use a variety of materials and be applied to various fields. Among DW systems, the flow-based type, using a syringe pump and nozzle, is simpler than other types. Furthermore, the range of materials is exceptionally wide. In additive processes, a three dimensional structure is made of stacking layer. Each layer is made of several lines. In this regard, good surface roughness of fabricated layers is essential to three dimensional fabrication. The surface roughness of any fabricated layer tends to change with the dispensing pattern. When multiple layers fabricated by a nozzle dispensing system are stacked, control of the nozzle position from the substrate is important in order to avoid interference between the nozzle and the fabricated layer. In this study, a fluid direct writing system for three dimensional structure fabrication was developed. Experimentsto control the position of the nozzle from substrate were conducted in order to examine the characteristics of the material used in this system.

Study of the Geometry and Wettability of Nozzles for Precise Ejection of High Viscous Liquids (고점도 용액 정밀토출을 위한 노즐 직경 및 표면젖음성 특성 연구)

  • Lee, Sanghyun;Bae, Jae Hyeon;Lee, Sangmin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.123-128
    • /
    • 2021
  • Liquid dispensing systems are extensively used in various industries such as display, semiconductor, and battery manufacturing. Of the many types of dispensers, drop-on-demand piezoelectric jetting systems are widely used in semiconductor industries because of their ability to dispense minute volumes with high precision. However, due to the problems of nozzle clogging and undesirable dispensing behavior in these dispensers, which often result in device failure, the use of highly viscous fluids is limited. Accordingly, we studied the behaviors of droplet formation based on changes in viscosity. The effects of surface energy and the inner diameters of needle-type nozzles were also studied. Results showed that nozzles with lower surface energies reduced the ejection volume of droplets when a smaller nozzle diameter (0.21 mm in this study) was applied. These results indicate that the hydrophobic treatment of nozzle surfaces and the use of smaller nozzle diameters are critical factors enabling the use of highly viscous fluids in precision dispensing applications.

Wear Characteristics for Rod and Nozzle of Jetting Dispenser Driven by Dual Piezoelectric Actuators Under High Frequency with Phosphor-containing Liquid (형광체 함유 용액 고속 토출 조건에서의 듀얼 압전 디스펜서 공이와 노즐의 마모 특성 평가)

  • Ha, Myeong-Woo;Lee, Kwang-Hee;An, Jun-Wook;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.52-58
    • /
    • 2017
  • An ultra-high precise ejection process is essential in a dispensing system for fabricating various precision parts such as a semiconductor, LED, and camera module. The size of such parts has been decreasing, which implies that a precise ejecting technique is required. A phosphor-containing liquid is ejected via a dispenser using dual piezoelectric actuators that are used for generating a high-speed dispensing mechanism. The rod and nozzle continuously contact in high speed to eject the liquid. However, the high-strength filler or phosphor in the liquid causes wear on the surfaces of the rod and nozzle during the dispensing process. As a result, the ejection reliability decreases as the wear on the surfaces increases. Therefore, it is necessary to estimate the wear characteristics of the rod and nozzle via an experiment and FE analysis. Reliability rests up to 1,000 cycles are conducted under relatively severe conditions. The flow rate and surfaces roughness of the rod and nozzle are measured in each ejection cycle. The surface images and wear volume are obtained before and after the tests and the ejection reliability is confirmed by measuring the flow rate of the liquid. The experimental results show that the ejection reliability is maintained up to 1,000k cycles; these results are validated by the simulation results.

Fine Dispensing Process of High Viscosity Phosphor for Repairing Application of White LED (백색 LED 보정 공정 적용을 위한 고점도 형광체 미세 정량토출 공정)

  • Yang, Bong Su;Yang, Young Jin;Kim, Hyung Chan;Ko, Jeong Beom;Cho, Kyung Ho;Doh, Yang Hoi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.124-131
    • /
    • 2016
  • Several research works for finding and optimizing the methods of dispensing high viscosity phosphor used in the fabrication of white LED's are currently in progress. High viscosity phosphor dispensing with a high accuracy is crucial because the dispensing rate and uniformity directly affect parameters such as the CIE chromaticity diagram, color temperature and luminous flux of white LED's. This study presents a novel method of dispensing high viscosity phosphor using electrohydrodynamic printing. The dispensing rate was optimized less than 0.01 mg phosphor using experiments and optimizing the process parameters including the standoff distance from the nozzle to the substrate, ink supply pressure, and multi-step pulsed waveform magnitude ratio. The dispensing rate was measured by dispensing 20 dots using drop-on-demand with the optimized parameters, and the experiments were repeated 10 times to maximize the data accuracy. The average dispensing rate that can be reliably used for high viscosity phosphor dispensing was 0.0052 mg.

NUMERICAL INVESTIGATION OF THE FLOW IN A MICRONOZZLE FOR DISPENSING A HIGHLY VISCOUS SEALNT (고점성 밀봉제 인쇄용 마이크로 노즐 설계를 위한 유동해석)

  • Park, G.J.;Kwak, H.S.;Son, B.C.;Kim, K.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.54-60
    • /
    • 2007
  • A theoretical and numerical investigation is performed on the flow in a micronozzle for precision-controlled sealant dispenser. The working fluid is a highly viscous epoxy used as sealant in producing LCD panels, which contains a number of tiny solid spacers. Flow analysis is conducted in order to achieve the optimal design of internal geometry of a nozzle. A simplified design analysis methodology is proposed for predicting the flow in the nozzle based on the assumption that the Reynolds number is much less than O(1). The parallel numerical computations are performed by using a CFD package FLUENT. Comparison discloses that the theoretical model gives a good prediction on the distribution of pressure and wall shear stress in the nozzle. However, the theoretical model has a difficulty in predicting the maximum wall shear stress as found in a limited region near edge by numerical computation. The theoretical and numerical simulations provide the good guideline for designing a dispensing micronozzle.

A Study on the Composition of Silver Paste for Micro Nozzle Dispensing Method (미세노즐 토출에 적용 가능한 은 전극의 조성에 대한 연구)

  • Kim, Do-Hyung;Shin, Dong-Wook;Ryu, Sung-Soo;Chang, Hyo-Sik;Kim, Hyeong-Jun
    • New & Renewable Energy
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2012
  • The screen printing has been widely used to form silver electrodes in solar cell device due to their simplicity of process. However, the wavy and irregular surface which is believed to be originated from a screen mask mesh and thixotropic characteristics of paste on screen printing process is well-known to give a negative effect on solar cell efficiency. The dispensing method that the silver paste is extruded through micro nozzle under a moderate pressure and coated on substrate can form the silver electrode without any wavy surface. In this study, we optimize the composition of silver paste and develop paste blending condition based on the thixotropic behavior of paste. The optimized paste shows a large thixotropic loop area which is related to an aspect ratio of electrode line and has the viscosity of 40 $Pa{\cdot}s$ at 40 s-1. The electrode line we finally obtainis 67.2 ${\mu}m$ in width and has an aspect ratio of 0.277.

A STUDY ON FLOW IN A SLIT NOZZLE FOR DISPENSING A LOW-VISCOSITY SOLUTION OF SINGLE-WALLED CARBON NANOTUBES (저점성 SWNT 분산액 도포용 슬릿 노즐 설계를 위한 유동해석)

  • Shon, B.C;Kwak, H.S.;Lee, S.H.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.78-85
    • /
    • 2009
  • A combined theoretical and numerical study is conducted to design a slit nozzle for large-area liquid coating. The objectives are to guarantee the uniformity in the injected flow and to provide the capability of explicit control of flow rate. The woking fluid is a dilute aqueous solution containing single-walled carbon nanotubes and its low viscosity and the presence of dispersed materials pose technical hurdles. A theoretical analysis leads to a guideline for the geometric design of a slit nozzle. The CFD-based numerical experiment is employed as a verification tool. A new flow passage unit, connected to the nozzle chamber, is proposed to permit the control of flow rate by using the commodity pressurizer. The numerical results confirm the feasibility of this idea. The optimal geometry of internal structure of the nozzle has been searched for numerically and the related issues are discussed.

Electrospray technique for preparation of core-shell materials : A mini-review

  • Tran, Vinh Van;Lee, Young-Chul
    • Particle and aerosol research
    • /
    • v.14 no.3
    • /
    • pp.49-63
    • /
    • 2018
  • During the last decade, electrospray (ES) techniques have been used as potential methods for preparing of core-shell materials. Depending on the architecture of nozzle and design of devices, the ES techniques includes monoaxial, coaxial, multiple coaxial nozzle ES and microfluidic ES devices. ES operates based on a basic principle, in which a spray of monodisperse droplets is formed by dispensing an electrically conductive liquid through a capillary charged to a sufficiently high potential. In review of many recent research papers, we take a closer look at ES techniques and their applications for fabrication of core-shell materials. Several advantages of ES technique compared with other methods were emphasized and it may be regarded as a potential tool for fabrication of core-shell materials current and near future.