• Title/Summary/Keyword: Nozzle Assembly

Search Result 41, Processing Time 0.029 seconds

Status of Combustor Development for Industrial Gas Turbine (산업용 가스터빈 연소기 개발 현황)

  • Ahn, Chulju;Park, Heeho;Kim, Min-Ki;Kim, Myeonghyo;Jung, Seungchai;Kim, Kitae;Shon, Youngchang
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.113-116
    • /
    • 2013
  • The Samsung Techwin has been developed the various types of combustor and fuel nozzle frontal devices for the aero engine and small scale industrial gas turbines. Currently, we have been developed the highly heat capacity and long-lived gas turbine combustor based on the short-lived combustor and fuel injector technologies. In this paper, the market trends and the information on the survey of an advanced gas turbine combustor were introduced for the development of large scale gas turbine combustor and fuel nozzle assembly.

  • PDF

Design of Blank Support Structure for Large and Curved Thick Plate Forming (대면적 후곡판 성형을 위한 블랭크 지지구조 설계)

  • Kwak, B.S.;Yoon, M.J.;Jeon, J.Y.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.27 no.1
    • /
    • pp.18-27
    • /
    • 2018
  • As one of the functional metal parts in steam turbine diaphragm assembly, the hollow-partitioned turbine nozzle (stator) has large and thick geometries, as well as an asymmetric configuration. Therefore it is hard to support a metal blank in the die cavity. To ease this situation and control posture and position of metal blank (workpiece), a blank support structure is newly introduced. The blank support structure is basically composed of enlarged arms from the blank, guide pins and linear bearings. It can help to control the intermediate blank without a critical sliding phenomenon. The operation mechanism of this blank support structure, during thick plate forming for the hollow-partitioned turbine nozzle stator, is first evaluated. A series of FEM-based numerical simulations, with respect to the width of the guide arm as geometric design parameters, are carried out to investigate its applicable range. As the results, it is observed the blank support structure for this thick plate forming can guide the workpiece to have stable posture during the plate forming process.

Development of Special Robot Welding Nozzle for the Reduction of CO2 Gas Consumption (CO2 가스 절약형 로봇 용접용 노즐 개발에 관한 연구)

  • Lee, Jongkil
    • 대한공업교육학회지
    • /
    • v.33 no.1
    • /
    • pp.282-296
    • /
    • 2008
  • Present automobile robot welding use $CO_2$ inert gas as a shielding fluid. The inert gas is spreading out and consumable. This present welding mechanism interfered with the welding nozzle. After welding several places have welding defects. Therefore, to reduce the $CO_2$ inert gas and to avoid interference with the material and to increase production modified nozzle which composed of cap and tip are needed. Suggested modified nozzle assembly composed of two stages i.e. $1^{st}$ and $2^{nd}$ stage. At the second stage it has 8 holes which is 3mm of diameter around the circumference. On the base of experimental results the inert $CO_2$ gas discharge reduced to 47% and welding defects decreased also. Modified two stage welding cap can be applied to the present robot welding machine and save the prime cost.

Coupled Thermal-Structural Analysis of the Combustor Assembly of 200kW Micro Gas Turbine Engine (200kW급 마이크로 가스터빈 연소기의 열-구조 연성 해석)

  • Park, Sangjin;Rhee, Huinam;Lee, Sang Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4093-4099
    • /
    • 2014
  • In this study, the thermal-structural behavior of the combustor assembly of 200 kW micro gas turbine system was performed. The typical combustor assembly consists of a Liner, Inner & Outer Case, Burner and Nozzle ring, etc. There are some gaps and friction elements between the components to compensate for the different thermal expansions of various components. Therefore, the developed finite element model includes nonlinear elements. The boundary support conditions of the combustor assembly significantly affect the stress distribution due to the high temperature gradient. This paper deals with parametric studies to quantitatively determine the effects of the variation of the support conditions on the stress distribution and deformation of various components of combustor assembly. These results may be useful for the design of the combustor assembly.

Stress Corrosion Cracking Lifetime Prediction of Spring Screw (스프링 체결나사의 응력부식균열 수명예측)

  • Koh, S.K.;Ryu, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.7-12
    • /
    • 2004
  • A lifetime prediction of holddown spring screw in nuclear fuel assembly was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure and to predict the stress corrosion cracking life of the screw, a stress analysis of the top nozzle spring assembly was done using finite element analysis. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Normalized stress intensity factors for PWSCC life prediction was proposed. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.78 years, which was fairly close to the actual service life of the holddown spring screw.

  • PDF

Surface Modification Silica Nanoparticles by Aerosol Self Assembly (에어로졸 자기조립에 의한 실리카 나노분말의 표면개질)

  • Kil, Dae-Sup;Jang, Hee-Dong;Chang, Han-Kwon;Cho, Kuk;Kim, Sun-Kyung;Oh, Kyoung-Joon;Choi, Jin-Hoon
    • Korean Journal of Materials Research
    • /
    • v.20 no.2
    • /
    • pp.78-81
    • /
    • 2010
  • Surface modification of silica nanoparticles was investigated using an aerosol self assembly. Stearic acid was used as surface treating agent. A two-fluid jet nozzle was employed to generate an aerosol of the colloidal suspension, which contained 20 nm of silica nanoparticles, surface modifier, and ethyl alcohol. Powder properties such as morphology, specific surface area and pore size distribution were analyzed by SEM, BET and BJH methods, respectively. Surface properties of the silica power were analyzed by FT-IR. The OH bond of the $SiO_2$ surface was converted to a C-H bond. It was revealed that the hydrophilic surface changed to a hydrophobic one due to the aerosol self assembly. Morphology of the surface treated powder was nanostructured with lots of pores having an average diameter of around $2\;{\mu}m$. Depending on the stearic acid concentration (0.25 to 1.0 wt%), the pore size distribution of the particles and the degree of hydrophobicity ranged from 1.5 nm to 180 nm and 29.6% to 50.2%, respectively.

An Experimental Study of the Performance Characteristics with Four Different Rotor Blade Shapes on a Small Mixed-Type Turbine

  • Cho Soo-Yong;Cho Tae-Hwan;Choi Sang-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1478-1487
    • /
    • 2005
  • A small mixed-type turbine with a diameter of 19.9 mm has been substituted for a rotational part of pencil-type air tool. Usually, a vane-type rotor is applied to the rotational part of the air tool. However, the vane-type rotor has some problems, such as friction, abrasion, and necessity of accurate assembly etc.,. These problems make the life time of the vane-type air tool short, but air tools operated by mixed-type turbines are free of friction and abrasion because the turbine rotor dose not contact with the casing. Moreover, it is assembled easily because of no axis offset. These characteristics are merits for using air tools, but loss of power is inevitable on a non-contacting type rotor due to flow loss, tip clearance loss, and profile loss etc.,. In this study, four different rotors are tested, and their characteristics are investigated by measuring the specific output power. Additionally, optimum nozzle location against the rotor is studied. Output powers are obtained through measured pressure, temperature, torque, rotational speed, and flow rate. The experimental results obtained with four different rotors show that the rotor blade shape greatly influences to the performance, and the optimum nozzle location exists near the mid span of the rotor.

HEAT TRANSFER ANALYSIS OF CONCRETE STORAGE CASK DEPENDING ON POROUS MEDIA REGION OF SPENT FUEL ASSEMBLY (사용후핵연료 집합체의 다공성 매질 적용영역에 따른 콘크리트 저장용기 열전달 해석)

  • Kim, H.J.;Kang, G.U.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.33-39
    • /
    • 2016
  • Generally, thermal analysis of spent fuel storage cask has been conducted using the porous media and effective thermal conductivity model to simplify the structural complexity of spent fuel assemblies. As the fuel assembly is composed of two regions; active fuel region corresponding to UO2 pellets and unactive fuel region corresponding to the top and bottom nozzle, the heat transfer performance can be influenced depending on porous media application at these regions. In this study, numerical analysis on concrete storage cask of spent fuel was performed to investigate heat transfer effects for two cases; one was porous media application only to active fuel region(case 1) and the other one was porous media to whole length of fuel assembly(case 2). Using computational fluid dynamics code, the three dimensional, 1/4 symmetry model was constructed. For two cases, maximum temperatures for each component were evaluated below the allowable limits. For the case 1, maximum temperatures for fuel cladding, neutron absorber and baskets inside the canister were slightly higher than those for the case 2. In particular, even though the helium flows with low velocity due to buoyant forces occurred at the top and bottom of unactive fuel region, treating only active fuel region as the porous media was ineffective in respect of the heat removal performance of concrete storage cask, implying a conservative result.

Development of an Automatic Water Control System for Greenhouse Soil Water Content Management (시설재배 토양의 수분 조절을 위한 자동 수분제어시스템 개발)

  • Lee, D.H.;Lee, K.S.;Chang, Y.C.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.2
    • /
    • pp.115-123
    • /
    • 2008
  • This study was conducted to develop an automatic soil water content control system for greenhouse, which consisted of drip irrigation nozzles, soil water content sensors, an on/off valve, a servo-motor assembly and a control program. The control logic adopted in the system was Ziegler-Nichols algorithm and rising time, time constant and over/undershoot ratio as control variables in the system was selected and determined by various control experiments to maintain small delay time and low overshoot. Based on the experimental results, it was concluded that the control system developed in the study could replace the unreliable conventional greenhouse soil water management.

Kinematic Optical Design of an Open-Close Type Gripper Mechanism (개페식 파지공구 메카니즘의 기구학적 최적 설계)

  • Kim, Whee-Kuk;Park, Joo-Young;Yoon, Seong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1762-1772
    • /
    • 1996
  • The main objective of this study is to develop a gripper mechanixm that can be employed for assembly and removal tasks of a nozzle-dam of steam genetator in the process of the nuclear reactor maintenances. Brief description of the open-close thpe gripper mechanism, its position analysis, and its kinematic analysis are given. The optimal design of the gripper mechanism with and without slipping on its two gipping surfaces is considered. As an optimal design index, the ratio of the actuator force of prismatic cylinder to gripping load is proposed. Then, based on this index the oiptimal design is carried out to identify values of optimal design parameters for the gripper dechanism.