• Title/Summary/Keyword: Nozzle Angle

Search Result 531, Processing Time 0.029 seconds

Effect of Nozzle Distance and Angle in the Iron-ore Sintering Dual Burner on Flame Characteristics (철광석 소결용 듀얼 버너의 노즐 간격과 각도가 화염 특성에 미치는 영향)

  • Lee, Young-Jun;Hwang, Min-Young;Kim, Gyu-Bo;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.163-170
    • /
    • 2010
  • The objective of this study is to investigate the combustion characteristics of dual type of sintering burner as a function of design parameters using lab-scale sintering burner through experimental and numerical approaches. Combustion characteristics were evaluated by the radical method. The numerical model was verified as a temperature using R type of thermocouple at the bed surface. The effect of nozzle distance and angle were performed through the CFD analysis, and the comparison of burner types. As a results, dual type burner has more wider and uniform flame distribution than single type burner. Asymmetry and 45 degree angle condition have been suggested as an optimal condition for the ignition of the sintering bed surface.

Numerical Study on Scavenge Characteristics in a Subchamber of Constant Volume Combustor (정적연소기 부실내 잔류공기 소기특성에 대한 수치해석적 연구)

  • Heo, Hyeung-Seok;Suh, Yong-Kweon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1830-1834
    • /
    • 2004
  • In this paper, we present scavenge characteristics in a small subchamber of HCCI. It is very important to enhance scavenge rate because ignition in a chamber sometimes does not happen. To understand this phenomenon numerical tool was performed using the FLUENT which is a commercial code. Focus is given to the effect on the scavenge rate of the geometric factor that is the angle of nozzle injection. The numerical results show that the scavenge ones in the subchamber heavily depend on the nozzle angle. It was found that the scavenge rate is more effective at angled nozzle.

  • PDF

Spray Characteristics of Electrostatic Pressure-Swirl Nozzle for Burner Application

  • Laryea, Gabriel Nii;No, Soo-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.16-23
    • /
    • 2002
  • Electrostatic pressure-swirl nozzle for practical oil burner application has been designed. The charge injection method has been used in this design, where the nozzle consists of a sharp pointed tungsten wire as a charge injector and the nozzle body grounded. The spray characteristics of the nozzles have been investigated by using an insulating liquid, i.e. kerosene without active surface agent. Breakup length of liquid decreased with an increase in applied voltage and injection pressure, while the spray angle increased with an increased in both applied voltage and injection pressure. An empirical equations have been suggested to predict the breakup length for electrostatic pressure-swirl atomizer. The experimental result was within the range of the predicted equations. The SMD decreased between the ranges of 2.8 ${\sim}$ 33% when the conventional nozzle was compared to the electrostatic with -10 kV applied to the electrode at a radial distance from 5 to 20 mm.

  • PDF

Investigation of the 2D Convergent-Divergent Thrust Vectoring Nozzle (2D 추력편향 노즐 성능 및 유동 해석)

  • Kim, Yoon-Hee;Choi, Seong-Man;Chang, Hyun-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.483-486
    • /
    • 2009
  • An investigation of the thrust vectoring nozzle which can be applied to the supersonic variable exhaust system was performed. The maximum mach number of the model aircraft is 1.8 and mission radius is about 400Nm. The cycle analysis are performed at each operating regime of the aircraft and the specifications of the thrust vectoring nozzle were developed. Based upon the requirement of the thrust vectoring nozzle, two dimensional thrust vectoring nozzle were designed and flow analysis was conducted by deflection of the pitch and yaw angle.

  • PDF

Thrust augmentation through after-burning in scramjet nozzles

  • Candon, Michael J.;Ogawa, Hideaki;Dorrington, Graham E.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.183-198
    • /
    • 2015
  • Scramjets are a class of hypersonic airbreathing engine that are associated with realizing the technology required for economical, reliable access-to-space and high-speed atmospheric transport. After-burning augments the thrust produced by the scramjet nozzle and creates a more robust nozzle design. This paper presents a numerical study of three parameters and the effect that they have on thrust augmentation. These parameters include the injection pressure, injection angle and streamwise injection position. It is shown that significant levels of thrust augmentation are produced based upon contributions from increased pressure, mass flow and energy in the nozzle. Further understanding of the phenomenon by which thrust augmentation is being produced is provided in the form of a force contribution breakdown, analysis of the nozzle flowfields and finally the analysis of the surface pressure and shear stress distributions acting upon the nozzle wall.

A Study of Thrust-Vectoring Nozzle Flow Using Coflow-Counterflow Concept (Coflow-Counterflow 개념을 이용한 추력벡터 노즐에서 발생하는 유동특성에 관한 연구)

  • Jung, Sung-Jae;Sanalkumar, V.R.;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.592-597
    • /
    • 2003
  • Thrust vector control using a coflow-counterflow concept is achieved by suction and blowing through a slot adjacent to a primary jet which is shrouded by a suction collar. In the present study, the flow characteristics of thrust vectoring is investigated using a numerical method. The nozzle has a design Mach number of 2.0, and the operation pressure ratio is varied to obtain various flow features of the nozzle flow. Test conditions are in the range of the nozzle pressure ratio from 6.0 to 10.0, and a suction pressure from 90kPa to 35kPa. Two-dimensional, compressible Navier-Stokes computations are conducted with RNG ${\kappa}-{\varepsilon}$ turbulence model. The computational results provide an understanding of the detailed physics of the thrust vectoring process. It is found that an increase in the nozzle pressure ratio leads to increased thrust efficiency but reduces the thrust vector angle.

  • PDF

A Computational Study of the Fluidic Thrust Vector Control Using Secondary Flow Injection (2차 유동 분사를 이용한 추력벡터 제어에 관한 수치해석적 연구)

  • Lim, Chae-Min;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.496-501
    • /
    • 2003
  • Computational study is performed to understand the fluidic thrust vectoring control of an axisymmetric nozzle, in which secondary gas injection is made in the divergent section of the nozzle. The nozzle has a design Mach number of 2.0, and the operation pressure ratio is varied to obtain the different flow features in the nozzle flow. The injection flow rate is varied by means of the injection port pressure. Test conditions are in the range of the nozzle pressure ratio from 3.0 to 8.26 and the injection pressure ratio from 0 to 1.0. The present computational results show that, for a given nozzle pressure ratio, an increase of the injection pressure ratio produces increased thrust vector angle, but decreases the thrust efficiency.

  • PDF

Supersonic Axisymmetric Minimum Length Nozzle Conception at High Temperature with Application for Air

  • Zebbiche, Toufik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.1-30
    • /
    • 2008
  • When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect; its state equation remains always valid, except, it is named in more by calorically imperfect gas. The aim of this work is to trace the profiles of the supersonic axisymmetric Minimum Length Nozzle to have a uniform and parallel flow at the exit section, when the stagnation temperature is taken into account, lower than the dissociation threshold of the molecules, and to have for each exit Mach number and stagnation temperature shape of nozzle. The method of characteristics is used with the algorithm of the second order finite differences method. The form of the nozzle has a point of deflection and an initial angle of expansion. The comparison is made with the calorically perfect gas. The application is for air.

Analysis of the Characteristics of an Aerospike Pintle Nozzle in terms of Stroke and Operating Pressure

  • Kim, Jeongjin
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.4
    • /
    • pp.1-9
    • /
    • 2020
  • The characteristics of an aerospike pintle nozzle system with excellent altitude compensation were analyzed using cold air testing. It was confirmed that reducing the stroke of the aerospike nozzle is effective in increasing the thrust. However, the results of additional numerical analysis indicated that the discharge coefficient factor was significantly lower at the maximum stroke. The Vena contracta due to the cowl reduction angle decreased the effective nozzle throat area at the maximum stroke and hindered expansion. Complementing the cowl design may thus increase the efficiency of a solid-propellant rocket engine that uses the aerospike pintle nozzle system.

A Study on the Heat Transfer Characteristics of Turbulent Round Jet Impinge on the Inclined Concave Surface Using Transient Liquid Crystal Method (과도액정 기법을 이용한 오목표면 경사각도에 따른 난류 충돌 제트의 열전달 특성에 관한 연구)

  • Lim Kyoung-Bin;Lee Chang-Hee;Lee Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.656-662
    • /
    • 2006
  • The effects of concave hemispherical surface with inclined angle on the local heat transfer from a turbulent round jet impinging were experimentally investigated using transient liquid crystal method. This method suddenly exposes a preheated wall to an impinging jet and then the video system records the response of liquid crystals for the measurement of the surface temperature. The Reynolds numbers were used 11000, 23000 and 50000, nozzle-to-surface distance ratio from 2 to 10 and the surface angles $\alpha=0^{\circ},\;15^{\circ},\;30^{\circ}\;and\;40^{\circ}$. Correlations of the stagnation point Nusselt number according to Reynolds number, jet-to-surface distance ratio and dimensionless surface angle are investigated. In the stagnation point, in term of $Re^n$, n ranges from 0.43 in case of $2{\leq}L/d\leq6$ to 0.45 in case of $6. The maximum Nusselt number occurs in the direction of upstream. The displacement of the maximum Nusselt number from the stagnation point increases with increasing surface angle or decreasing nozzle-to-surface distance. The maximum displacement is about 0.7 times of the jet nozzle diameter.