• Title/Summary/Keyword: Nox4

Search Result 724, Processing Time 0.023 seconds

A Study on the Removal of SOx and NOx Using Catalytic Ceramic Filters (촉매담지 세라믹 필터를 이용한 황산화물과 질소산화물의 제거에 관한 연구)

  • 홍민선;이동섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.5
    • /
    • pp.455-464
    • /
    • 1998
  • Removal teals of Soxmox were performed using low density ceramic filters doped with various catalysts. Disc type (50 mmO.Dx10 mmt) low density ceramic filters were doped with three different catalysts such as Cu to remove SOx and NOx, and Mn and Co to remove NOx. The air permeabilities and specific surface areas were 40~50cc/min.cm2.cmH2O and 4.1~8.88 m2/g, respectively. Also, the peak pore sizes of catalyst support were 3~5nm. Tests were focused to search optimum operating temperatures for different catalysts. It was found that as the CuO content increases, SOx removal efficiency was increased. NOx removal efficiencies for Mn, Cu and Co, were 85% at 30$0^{\circ}C$, 90% at 40$0^{\circ}C$ and 90% at 45$0^{\circ}C$, respectively.

  • PDF

Effect of H2/CO Ratio, Dilution Ratio, and Methane/Syngas Ratio on Combustion Characteristics of Syngas Turbine (H2/CO비, 희석량, 메탄/석탄가스비가 합성가스용 가스터빈의 연소특성에 미치는 영향)

  • Lee, Min Chul;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.59-60
    • /
    • 2012
  • This paper describes gas turbine combustion characteristics of synthetic gas which is mainly composed of hydrogen and carbon monoxide. The combustion characteristics such as combustion instability, NOx and CO emission, temperatures at turbine inlet, liner and dump plane, and flame structure were investigated when changing when changing $H_2:CO$ ratio, dilution ratio, and $CH_4:syngas$ ratio. From the results, quantitative relationships are derived between key aspects of combustion performance, notably NOx emission. It is concluded that NOx emission of syngas is strongly influenced by the diluent heat capacity and combustion instability. Moreover, NOx control method using diluents such as $N_2$, $CO_2$, steam is verified.

  • PDF

Engine Performance Simulation to Evaluate the NOx Reduction of Charge Air Moisturizer System in a Medium Speed Diesel Engine (흡기가습 중형 디젤 엔진의 NOx 저감 평가를 위한 성능 해석 연구)

  • Kim, Ki-Doo;Park, Hyoung-Keun;Kim, Byung-Suck;Ha, Ji-Soo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.15-16
    • /
    • 2005
  • In this study, the characteristics of NOx reduction by using charge air moisturizer system were evaluated by engine performance simulation in medium speed diesel engines. The results of performance simulation were verified by experimental results of single cylinder medium speed diesel engine equipped with charge air moisturizer system. Performance simulation was carried out to evaluate charge air moisturizer system of turbocharged diesel engine, HYUNDAI HiMSEN 9H25/33 engine. Those results show 50% NOx reduction at dew point $80^{\circ}C$ and charge air pressure 4bar.

  • PDF

NUMERICAL STUDY ON THE MIXER TYPES OF UREA-SCR SYSTEM FOR FLOW MIXING IMPROVEMENT (Urea-SCR 시스템에서 유동혼합 개선을 위한 혼합기 형상에 관한 수치적 연구)

  • Lee, J.W.;Choi, H.K.;Yoo, G.J.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.9-16
    • /
    • 2010
  • To alleviate NOx emission, a variety of approaches has been applied. In marine diesels, the application of SCR systems has been considered an effective exhaust aftertreatment method for NOx emission control. Most current SCR systems use a various catalyst for the reaction of ammonia with NOx to form nitrogen and water. In theory, it is possible to achieve 100% NOx if the $NH_3$-to-NOx ratio is 1:1. However, the reaction has a limited non-uniformity of the exhaust gas flow and ammonia concentration distribution. Therefore, it is necessary to investigate the optimum flow conditions. In order to achieve uniform flow at monolith front face, we are equipped with a various mixed devices. In this paper, it is presented that the mixed devices play an important role improvement of flow patterns and particle distributions of $NH_3$ by numerical simulation.

Simultaneous NOx, PM Reduction by the Late Injection & Fast Combustion Type Premixed Combustion Technology (지연분사급속연소방식 예혼합연소 기술에 의한 NOx, PM의 동시저감)

  • 김장헌;최인용;김창일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.31-35
    • /
    • 2004
  • A new combustion strategy called LIFC(Late Injection & Fast Combustion) was developed for simultaneous reduction of particulate matter(PM) and nitrogen oxides(NOx) in exhaust emission of diesel engines, In this study, effects of injection timing and injection pressure under relatively high EGR rate were investigated. The experiments were conducted in a conventional engine over a range of commercial engine speed. The test engine could be operated in LIFC up to 2000rpm / bmep 5 bar condition with significant reduction of NOx and PM. The experimental results showed potential for the mechanism of the simultaneous reduction of NOx and PM from HSDI diesel engines.

Characteristics on De-CH4/NOx according to Ceramic and Metal Substrates of SCR Catalysts for CNG Buses (CNG 버스용 SCR 촉매의 세라믹과 메탈 담체에 따른 De-CH4/NOx 특성)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.18-24
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for about 95% of the automobiles in use. Also, in order to meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is gradually increasing. Natural gas is a clean fuel that emits few air pollutants and has been used mainly as a fuel for city buses. In the long term, we intend to develop a new NGOC/LNT+NGCO/SCR combined system that simultaneously reduces the toxic gases, $CH_4$ and NOx, emitted from CNG buses. The objective of this study is to investigate the characteristics of $de-CH_4/NOx$ according to the ceramic and metal substrates of the SCR (Selective Catalytic Reduction) catalysts mounted downstream of the combined system. The V and Cu-SCR catalysts did not affect the $CH_4$ oxidation reaction, the two NGOC/SCR catalysts each coated with two layers began to oxidize $CH_4$ at $400^{\circ}C$, and the amount of $CH_4$ emitted was reduced to about 20% of its initial value at about $550^{\circ}C$. The two NGOC/SCR catalysts each coated with two layers showed a negative (-) NOx conversion rate above $350^{\circ}C$. The ceramic-based combined system reached LOT50 at $500^{\circ}C$, which was about 20% higher in terms of the $CH_4$ conversion rate than the metal-based combined system, showing that the combined system of NGOC/LNT+Cu-SCR is a suitable combination.

Exhaust Gas Recirculation System Applied to 56 kW Off-Road Vehicle to Satisfy the Tier 4 Interim Emission Regulation (Tier 4 Interim 배기규제 만족을 위한 56kW급 오프로드 차량 EGR 적용에 관한 연구)

  • Kang, Jeong-Ho;Han, Joon-Sup;Chung, Jae-Woo;Jeong, Gun-Woo;Cho, Gyu-Baek;Lim, Jung-Ho;Pyo, Su-Kang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.217-224
    • /
    • 2012
  • In general, transportation sources include both on-road vehicles and off-road equipment. Off-road vehicles have usually used diesel engines, which have the disadvantage of high NOx emission. Common rail direct injection (CRDI) and after-treatment systems have been applied to meet the exhaust gas emission regulations for diesel vehicles. In the present, agricultural machinery has satisfied the Tier 3 emission regulations by using waste gate turbocharger (WGT) and internal exhaust gas recirculation (EGR). In this paper, the combustion and emission characteristics of an EGR system applied to a 56kW off-road vehicle in non-road transient cycle (NRTC) mode have been investigated. The EGR map was made from foundation experiments determining the EGR duty for all engine operating conditions, and then this map was applied to the NRTC mode. Consequently, the NOx emission was reduced by the EGR system, and the Tier 4 interim emission regulations were satisfied by using both the EGR system and an after-treatment system.

Anti-Inflammatory and Antioxidative Effects of Acaiberry in Formalin-Induced Orofacial Pain in Rats (흰쥐의 악안면 통증에서 아사이베리의 항염증 및 항산화 효과)

  • Kim, Yun-Kyung;Hyun, Kyung-Yae;Lee, Min-Kyung
    • Journal of dental hygiene science
    • /
    • v.14 no.2
    • /
    • pp.240-247
    • /
    • 2014
  • Acaiberry (Euterpe oleracea Mart.) is widely diffused in amazon and is known that has high antioxidant capacity and potential anti-inflammatory activities. The aim of this study was to evaluate analgesic effects of acaiberry in formalin-induced orofacial pain through p38 mitogen-activated protein kinases (p38 MAPK) and nicotinamide adenine dinucleotide phosphate 4 (NOX4) pathway. Rats were divided into 5 groups (n=6); formalin (5%, $50{\mu}L$), formalin after saline (vehicle) or acaiberry (16, 80, 160 mg/kg, intraperitoneally). The nociceptive response was investigated all of groups, p38 MAPK or NOX4 were analysed at dose of 80 mg/kg of acaiberry in rat's medulla oblongata and adrenal gland. Results indicated that acai berry produced analgesic effect in a dose-dependent manner and significantly reduced formalin-induced nociceptive response at 15~40 min. Acaiberry (80 mg/kg) decreased the increased p38 MAPK activation and NOX4 expression in medulla oblongata and adrenal gland. Based on these results, acaiberry is believed to be useful for modulation of orofacial pain and its treatments because of its anti-inflammatory and antioxidative effects.

Simultaneous Reduction of CH4 and NOx of NGOC/LNT Catalysts for CNG buses (CNG 버스용 NGOC/LNT 촉매의 CH4와 NOx의 동시 저감)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.167-175
    • /
    • 2018
  • Natural gas is a clean fuel that discharges almost no air-contaminating substances. This study examined the simultaneous reduction of $CH_4$ and NOx of NGOC/LNT catalysts for CNG buses related to the improvement of the $de-CH_4/NOx$ performance, focusing mainly on identifying the additive catalysts, loading of the washcoat, stirring time, and types of substrates. The 3wt. % Ni-loaded NGOC generally exhibited superior $CH_4$ reduction performance through $CH_4$ conversion, because Ni is an alkaline, toxic oxide, and exerts a reducing effect on $CH_4$. A excessively small loading resulted in insufficient adsorption capacity of harmful gases, whereasa too high loading of washcoat caused clogging of the substrate cells. In addition, with the economic feasibility of catalysts considered, the appropriate amount of catalyst washcoat loading was estimated to be 124g/L. The NOx conversion rate of the NGOC/LNT catalysts stirred from $200^{\circ}C$ to $550^{\circ}C$ for 5 hours showed 10-15% better performance than the NGOC/LNT catalysts mixed for 2 hours over the entire temperature range. The NGOC/LNT catalysts exhibitedapproximately 20% higher $de-CH_4$ performance on the ceramic substrates than on the metal substrates.

NOx Emission Characteristics of Diesel Passenger Cars Met Euro 6a and 6b Regulations on Off-cycles (Off-cycle에서 Euro 6a 및 6b 규제 만족 디젤 자동차의 NOx 배출 특성)

  • Kim, Sung-Woo;Lim, Jae-Hyuk;Kim, Ki-Ho
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.68-78
    • /
    • 2017
  • Major countries have tighten their NOx regulation of diesel passenger cars. In the case of the EU, the regulation has been toughen up to 6.25 times since 2000. Despite the regulation the NOx concentration of the ambient has not been reduced proportionally. Futhermore, some manufacturers were disclosed using a defeat device for meeting the regulation illegally. As these issues, to reduce NOx emission practically, Korea and the EU introduced the real-world driving emission(RDE) regulation and the test method that will be applied after 2017. Also, the US has used the test equipment(PEMS) to detect a defeat device. In this paper, for the regulation to make a soft landing in Korea, 4 diesel passenger cars which met Euro 6a~6b regulation and were equipped with LNT/SCR were tested at a chassis dynamometer with environmental chamber applying the off-cycles(FTP, US06, SC03, HWFET and CADC) and several ambient condition(-7 and $14^{\circ}C$) as well as certification mode(NEDC, WLTC@ $23^{\circ}C$). The result of the test showed that the ambient temp. and the engine load as a test mode impacted the NOx emission of the cars while the vehicles with SCR emitted NOx lower than with LNT. Additionally, to propose an effective RDE test method, the above result was compared with the results of the other papers which tested RDE using the same cars.