• Title/Summary/Keyword: Novel metal

Search Result 658, Processing Time 0.025 seconds

Mechanics model of novel compound metal damper based on Bi-objective shape optimization

  • He, Haoxiang;Ding, Jiawei;Huang, Lei
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.363-371
    • /
    • 2022
  • Traditional metal dampers have disadvantages such as a higher yield point and inadequate adjustability. The experimental results show that the low yield point steel has superior energy dissipation hysteretic capacity and can be applied to seismic structures. To overcome these deficiencies, a novel compound metal damper comprising both low yield point steel plates and common steel plates is presented. The optimization objectives, including "maximum rigidity" and "full stress state", are proposed to obtain the optimal edge shape of a compound metal damper. The numerical results show that the optimized composite metal damper has the advantages such as full hysteresis curve, uniform stress distribution, more sufficient energy consumption, and it can adjust the yield strength of the damper according to the engineering requirements. In view of the mechanical characteristics of the compound metal damper, the equivalent model of eccentric cross bracing is established, and the approximate analytical solution of the yield strength and the yield displacement is proposed. A nonlinear simulation analysis is carried out for the overall aseismic capacity of three-layer-frame structures with a compound metal damper. It is verified that a compound metal damper has better energy dissipation capacity and superior seismic performance, especially for a damper with double-objective optimized shape.

Exploratory research on ultra-long polymer optical fiber-based corrosion sensing for buried metal pipelines

  • Luo, Dong;Li, Yuanyuan;Yang, Hangzhou;Sun, Hao;Chen, Hongbin
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.507-520
    • /
    • 2020
  • In order to achieve effective corrosion monitoring of buried metal pipelines, a Novel nondestructive Testing (NDT) methodology using ultra-long (250 mm) Polymer Optical Fiber (POF) sensors coated with the Fe-C alloy film is proposed in this study. The theoretical principle is investigated to clarify the monitoring mechanism of this method, and the detailed fabrication process of this novel POF sensor is presented. To validate the feasibility of this novel POF sensor, exploratory research of the proposed method was performed using simulated corrosion tests. For simplicity, the geometric shape of the buried pipeline was simulated as a round hot-rolled plain steel bar. A thin nickel layer was applied as the inner plated layer, and the Fe-C alloy film was coated using an electroless plating technique to precisely control the thickness of the alloy film. In the end, systematic sensitivity analysis on corrosion severity was further performed with experimental studies on three sensors fabricated with different metal layer thicknesses of 25 ㎛, 30 ㎛ and 35 ㎛. The experimental observation demonstrated that the sensor coated with 25 ㎛ Fe-C alloy film presented the highest effectiveness with the corrosion sensitivity of 0.3364 mV/g at Δm = 9.32 × 10-4 g in Stage I and 0.0121 mV/g in Stage III. The research findings indicate that the detection accuracy of the novel POF sensor proposed in this study is satisfying. Moreover, the simple fabrication of the high-sensitivity sensor makes it cost-effective and suitable for the on-site corrosion monitoring of buried metal pipelines.

Identification of Novel Non-Metal Haloperoxidases from the Marine Metagenome

  • Gwon, Hui-Jeong;Teruhiko, Ide;Shigeaki, Harayama;Baik, Sang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.835-842
    • /
    • 2014
  • Haloperoxidase (HPO, E.C.1.11.1.7) is a metal-containing enzyme oxidizing halonium species, which can be used in the synthesis of halogenated organic compounds, for instance in the production of antimicrobial agents, cosmetics, etc., in the presence of halides and $H_2O_2$. To isolate and evaluate a novel non-metal HPO using a culture-independent method, a cassette PCR library was constructed from marine seawater in Japan. We first isolated a novel HPO gene from Pseudomonas putida ATCC11172 by PCR for constructing the chimeric HPO library (HPO11172). HPO11172 showed each single open-reading frame of 828 base pairs coding for 276 amino acids, respectively, and showed 87% similarity with P. putida IF-3 sequences. Approximately 600 transformants screened for chimeric genes between P. putida ATCC11173 and HPO central fragments were able to identify 113 active clones. Among them, we finally isolated 20 novel HPO genes. Sequence analyses of the obtained 20 clones showed higher homology genes with P. putida or Sinorhizobium or Streptomyces strains. Although the HPO A9 clone showed the lowest homology with HPO11172, clones in group B, including CS19, showed a relatively higher homology of 80%, with 70% identy. E. coli cells expressing these HPO chimeric genes were able to successfully bioconvert chlorodimedone with KBr or KCl as substrate.

A Low Impedance and Short Guided-Wavelength Microstripline Employing a Periodically Perforated Ground Metal and Its Application to Miniaturized Ratrace MMIC (주기적 홀을 가지는 접지 금속막을 이용한 저임피던스/단파장 선로와 MMIC용 소형 레트레이스에의 응용)

  • Yun, Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.727-733
    • /
    • 2003
  • In order to realize miniaturized and low-impedance MMIC passive component, a novel microstripline structure employing periodically perforated ground metal was proposed. The novel microstripline structure showed much lower impedance, and shorter guided-wavelength than conventional one. Using the novel microstripline with periodically perforated ground metal, a miniaturized 15 $\Omega$ ratrace was fabricated. The line width of the ratrace was 20 $\mu\textrm{m}$, and the size of it was 0.375 mm$^2$, which is 9.3 % of conventional one. The ratrace exhibited good RF performances from 20 to 30 GHz.

A study on the UHF PD measuring technique for GIS with a metal flange around insulating spacer (스페이서에 Metal flange가 있는 GIS에서의 UHF PD 측정 기술 연구)

  • Kang, W.J.;Lee, C.J.;Kang, Y.S.;Park, J.B.;Lee, H.C.;Park, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1638-1640
    • /
    • 2003
  • In the recent years, UHF PD measuring technique for detecting partial discharges was proved the effective method for Gas Insulated Switchgear (GIS). However, in case of GIS with a metal flange around insulating spacer, UHF PD measurement using typical external UHF PD sensor is difficult. In this paper, a novel hole-type UHF PD sensor based on Archimedean spiral antenna theory has been proposed and realized. All spacers with metal flange have small hole in order to inject epoxy. Using the novel hole-type UHF PD sensor, it makes detection possible to PD signal that are emitted through the epoxy injection hole. Additionally, the measuring characteristic of UHF PD signals from several artificial defects in GIS and the novel ${\Phi}$-f-q pattern analysis technology are discussed.

  • PDF

Performance Determination of Novel Design Eddy Current Separator for Recycling of Non-Ferrous Metal Particles

  • Fenercioglu, Ahmet;Barutcu, Hamit
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.635-643
    • /
    • 2016
  • Improvements were made in the study for the design of the conventional Eddy Current Separator (ECS) used for separating small sized non-ferrous particles in the waste. These improvements include decreasing the air gap between the material and magnetic drum, making the drum position adjustable and placing the splitter closer to the drum. Thus, small particles were separated with high efficiency. The magnetic drum was removed from inside the ECS conveyor belt system as design change and was placed as a separate unit. Hence, the force generated on the test material increased by about 5.5 times while the air gap between the non-ferrous materials and drum decreased from 3 mm to 1 mm. The non-metal material in the waste is separated before the drum in the novel design. Whereas non-ferrous metal particles are separated by falling into the splitter as a result of the force generated as soon as the particles fall on the drum. Every material that passes through the drum can be recycled as a result of moving the splitter closer to the contact point of the drum. In addition, the drum can also be used for the efficient separation of large particles since its position can be adjusted according to the size of the waste material. The performance of the novel design ECS was verified via analytical approaches, finite element analysis (FEA) and experimental studies.

A Study of Eutectic Bonding for Aluminium using Novel Brazing Process (Novel Brazing법에 의한 Al의 공정접합에 관한 연구)

  • 정병호;김무길;이성열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.59-66
    • /
    • 2000
  • To investigate the optimum brazing condition, variation of bonded structure and mechanical properties of novel brazed pure Al with bonding condition (brazing temperature, time and Si/flux ratio) was studied. A basic study of the bonding mechanism was also examined. The optimum brazing condition was obtained at $590^{\circ}$ for 2 minutes and the bonded structure showed that it is composed of almost entirely eutectic Al-Si with near eutectic composition. At higher brazing temperature $630^{\circ}$, hypoeutectic Al-Si structure was observed in the bonded area and resulted in erosion of base metal. The thickness of eutectic layer formed in optimum brazing temperature increased linearly with the square root of time, showing a general diffusion controlled process. The ultimate tensile strength of bonded joint brazed at an optimum brazing condition was about 60% of base metal and its fracture surface showed a brittle mode.

  • PDF

A Complexation Study of Novel Triaza and Hexaaza Macrocycles for the Use of Analytical Reagents

  • Wakita, Hisanobu;Yamaguchi, Toshio;Matsuki, Yuuichi;Kurisaki, Tsutomu
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.449-456
    • /
    • 1995
  • Novel macrocyclic ligands modified with pendant arms, N, N', N'', N''', N'''', N'''''-hexakis(2-aminoethyl)-1, 4, 7, 10, 13, 16-hexaazacyclootadecane [$L_3$, Fig.1] and 1, 4, 7-tris(3-(o-hydroxyphenyl)propyl)-1, 4, 7-triazacyclononane [$L_4$, Fig.1] have been synthesized, and the protonation of $L_3$ and $L_4$ and stability constants of $L_3$ with bivalent transition metal ions and rare earth metal ions were determined by a potentiometry. The obtained results show that the complex formation of $L_3$ depends on the metal ligand ratios, and the stability of the metal complexes does not depend on the sizes of the metal ions, but on the nature of the metal ions. The structures of the rare earth complexes for $L_4$ were characterized by an X-ray absorption spectrometry(XAFS).

  • PDF

Effect of Support of Two-Dimensional Pt Nanoparticles/Titania on Catalytic Activity of CO Oxidation

  • Qadir, Kamran;Kim, Sang-Hoon;Kim, S.M.;Reddy, A.S.;Jin, S.;Ha, H.;Park, Jeong-Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.246-246
    • /
    • 2012
  • Smart catalyst design though novel catalyst preparation methods can improve catalytic activity of transition metals on reducible oxide supports such as titania by enhancement of metal oxide interface effects. In this work, we investigated Pt nanoparticles/titania catalysts under CO oxidation reaction by using novel preparation methods in order to enhance its catalytic activity by optimizing metal oxide interface. Arc plasma deposition (APD) and metal impregnation techniques are employed to achieve Pt metal deposition on titania supports which are prepared by multi-target sputtering and Sol-gel techniques. In order to tailor metal-support interface for catalytic CO oxidation reaction, Pt nanoparticles and thin films are deposited in varying surface coverages on sputtered titania films using APD. To assess the role of oxide support at the interface, APD-Pt is deposited on sputtered and Sol-gel prepared titania films. Lastly, characteristics of APD-Pt process are compared with Pt impregnation technique. Our results show that activity of Pt nanoparticles is improved when supported over Sol-Gel prepared titania than sputtered titania film. It is suggested that this enhanced activity can be partly ascribed to a very rough titania surface with the higher free metal surface area and higher number of sites at the interface between the metal and the support. Also, APD-Pt shows superior catalytic activity under CO oxidation as compared to Pt impregnation on sputtered titania support. XPS results show that bulk oxide is formed on Pt when deposited through impregnation and has higher proportion of oxidized Pt in the form of $Pt^{2+/4+}$ oxidation states than Pt metal. APD-Pt shows, however, mild oxidation with large proportion of active Pt metal. APD-Pt also shows trend of increasing CO oxidation activity with number of shots. The activity continues to increase with surface coverage beyond 100%, thus suggesting a very rough and porous Pt films with higher active surface metal sites due to an increased surface area available for the reactant CO and $O_2$ molecules. The results suggest a novel approach for systematic investigation into metal oxide interface by rational catalysts design which can be extended to other metal-support systems in the future.

  • PDF