• Title/Summary/Keyword: Novel drugs

Search Result 392, Processing Time 0.025 seconds

Molecular Cloning and Characterization of a Novel Exo-β-1,3-Galactanase from Penicillium oxalicum sp. 68

  • Zhou, Tong;Hu, Yanbo;Yan, Xuecui;Cui, Jing;Wang, Yibing;Luo, Feng;Yuan, Ye;Yu, Zhenxiang;Zhou, Yifa
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1064-1071
    • /
    • 2022
  • Arabinogalactans have diverse biological properties and can be used as pharmaceutical agents. Most arabinogalactans are composed of β-(1→3)-galactan, so it is particularly important to identify β-1,3-galactanases that can selectively degrade them. In this study, a novel exo-β-1,3-galactanase, named PoGal3, was screened from Penicillium oxalicum sp. 68, and hetero-expressed in P. pastoris GS115 as a soluble protein. PoGal3 belongs to glycoside hydrolase family 43 (GH43) and has a 1,356-bp gene length that encodes 451 amino acids residues. To study the enzymatic properties and substrate selectivity of PoGal3, β-1,3-galactan (AG-P-I) from larch wood arabinogalactan (LWAG) was prepared and characterized by HPLC and NMR. Using AG-P-I as substrate, purified PoGal3 exhibited an optimal pH of 5.0 and temperature of 40℃. We also discovered that Zn2+ had the strongest promoting effect on enzyme activity, increasing it by 28.6%. Substrate specificity suggests that PoGal3 functions as an exo-β-1,3-galactanase, with its greatest catalytic activity observed on AG-P-I. Hydrolytic products of AG-P-I are mainly composed of galactose and β-1,6-galactobiose. In addition, PoGal3 can catalyze hydrolysis of LWAG to produce galacto-oligomers. PoGal3 is the first enzyme identified as an exo-β-1,3-galactanase that can be used in building glycan blocks of crucial glycoconjugates to assess their biological functions.

SETDB1 mediated FosB expression increases the cell proliferation rate during anticancer drug therapy

  • Na, Han-Heom;Noh, Hee-Jung;Cheong, Hyang-Min;Kang, Yoonsung;Kim, Keun-Cheol
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.238-243
    • /
    • 2016
  • The efficacy of anticancer drugs depends on a variety of signaling pathways, which can be positively or negatively regulated. In this study, we show that SETDB1 HMTase is down-regulated at the transcriptional level by several anticancer drugs, due to its inherent instability. Using RNA sequence analysis, we identified FosB as being regulated by SETDB1 during anticancer drug therapy. FosB expression was increased by treatment with doxorubicin, taxol and siSETDB1. Moreover, FosB was associated with an increased rate of proliferation. Combinatory transfection of siFosB and siSETDB1 was slightly increased compared to transfection of siFosB. Furthermore, FosB was regulated by multiple kinase pathways. ChIP analysis showed that SETDB1 and H3K9me3 interact with a specific region of the FosB promoter. These results suggest that SETDB1-mediated FosB expression is a common molecular phenomenon, and might be a novel pathway responsible for the increase in cell proliferation that frequently occurs during anticancer drug therapy.

Identifying literature-based significant genes and discovering novel drug indications on PPI network

  • Park, Minseok;Jang, Giup;Lee, Taekeon;Yoon, Youngmi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.131-138
    • /
    • 2017
  • New drug development is time-consuming and costly. Hence, it is necessary to repurpose old drugs for finding new indication. We suggest the way that repurposing old drug using massive literature data and biological network. We supposed a disease-drug relationship can be available if signal pathways of the relationship include significant genes identified in literature data. This research is composed of three steps-identifying significant gene using co-occurrence in literature; analyzing the shortest path on biological network; and scoring a relationship with comparison between the significant genes and the shortest paths. Based on literatures, we identify significant genes based on the co-occurrence frequency between a gene and disease. With the network that include weight as possibility of interaction between genes, we use shortest paths on the network as signal pathways. We perform comparing genes that identified as significant gene and included on signal pathways, calculating the scores and then identifying the candidate drugs. With this processes, we show the drugs having new possibility of drug repurposing and the use of our method as the new method of drug repurposing.

Development of novel method for evaluation of antitumor effect of anticancer drugs on hepatocellular carcinoma induced using 3'-methyl-4-diethylaminoazobenzene in Sprague-Dawley rat (3'-methyl-4-diethylaminoazobenzene으로 유발된 랫트 hepatocellula carcinoma 모델에서 항암제의 항암효과에 대한 평가기법 개발)

  • Kim, Gon-sup;Kim, Jong-shu
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.3
    • /
    • pp.509-523
    • /
    • 1997
  • This study was carried out for investigating antitumor effects of 5-fluorouracil(5-FU), methotrexate(MTX) and retinoic acid(RA) on hepatocellular carcinoma induced in Sprague-Dawley rat. Antitumor effects were examined a flow cytometric DNA distributions by flow cytometry and stuied ATP/Pi using nuclear magnetic resorance, and the enzymatic activity of thymidylate synthetase and dihydrofolate reductase as well as contents of total collagen and sialic acid were measured with spectrophotometer. In this study, S phase fraction, contents of sialic acid and total collagen were decreased in the induced hepatocellular carcinoma treated with 5-FU and MTX, and synergistic effects of anticancer drugs were exhibited in the hepatocellular carcinoma treated with 5-FU and MTX simultaneously, and the inhibition of thymidylate synthetic and dihydrofolate reductase activity were shown in the hepatocellular carcinoma treated with 5-FU, MTX, and 5-FU and MTX simultaneously. On the other hand, the ratio of ATP/Pi were increased in all groups except group treated with RA. The experimental results suggest that above method may be valuable for evaluating antitumor effect of anticancer drugs.

  • PDF

The Role of Bronchodilators in Preventing Exacerbations of Chronic Obstructive Pulmonary Disease

  • Beeh, Kai M.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.4
    • /
    • pp.241-247
    • /
    • 2016
  • Bronchodilators are the cornerstone of symptomatic chronic obstructive pulmonary disease (COPD) treatment. They are routinely recommended for symptom reduction, with a preference of long-acting over short-acting drugs. Bronchodilators are classified into two classes based on distinct modes of action, i.e., long-acting antimuscarinics (LAMA, once-daily and twice-daily), and long-acting ${\beta}2$-agonists (LABA, once-daily and twice-daily). In contrast to asthma management, evidence supports the efficacy of both classes of long-acting bronchodilators as monotherapy in preventing COPD exacerbations, with greater efficacy of LAMA drugs versus LABAs. Several novel LAMA/LABA fixed dose combination inhalers are currently approved for COPD maintenance treatment. These agents show superior symptom control to monotherapies, and some of these combinations have also demonstrated superior efficacy in exacerbation prevention versus monotherapies, or combinations of inhaled corticosteroids plus LABA. This review summarizes the current data on clinical effectiveness of bronchodilators alone or in combination to prevent exacerbations of COPD.

Progress of Pruritus Research in Atopic Dermatitis

  • Lee, Chang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.246-256
    • /
    • 2010
  • Atopic dermatitis is a common skin disease affecting up to 10% of children and approximately 2% of adults. Atopic dermatitis exhibits four major symptoms, including intense itching, dry skin, redness and exudation. The "itch-scratch-itch" cycle is one of the major features in atopic dermatitis. The pathophysiology and neurobiology of pruritus is unclear. Currently there are no single and universally effective pharmacological antipruritic drugs for treatment of atopic dermatitis. Thus, controlling of itch is a very important unmet need in patients suffering from atopic dermatitis. This article will update progress during the past 10 years of research in the field of pruritus of atopic dermatitis, focusing on aspects of pruritogens (including inflammatory lipids, histamine, serotonin, proteinases, proteinase-activating receptors, neurotransmitters, neuropeptides, and opioid peptides), antipruritic therapies, and emerging new targets. Based on recent progress, researchers expect to identify exciting possibilities for improved treatments and to develop new antipruritic drugs acting through novel targets, such as histamine H4 receptor, gastrin-releasing peptide receptor, MrgprA3, thromboxane A2 receptor and the putative SPC receptor.

Detergent and Phospholipid Mixed Micelles as Proliposomes for an Intravenous Delivery of Water-Insoluble Drugs

  • Son, Kyong-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.3
    • /
    • pp.17-34
    • /
    • 1992
  • A novel drug delivery system, detergent-phospholipid mixed micelles as proliposomes, for water-insoluble compounds was developed by investigating (i) spontaneous formation of small unilamellar vesicles (SUV) from bile salt-egg phosphatidylcholine mixed micelles, (ii) the molecular mechanism of micelle-to-vesicle transition in aqueous mixtures of detergent-phospholipid, (iii) preparation and screening of a suitable liposomal formulation for a lipophilic drug: solubilization of the drug within the lipid bilayer, evaluation of the solubility limit, and characterization of the resulting product with respect to the physical properties and stability of the drug in the system, and (iv) testing antitumor activity in vitro. The results showed that the new carrier had a strong possibility to be a biocompatible universal formulation for water-insoluble drugs.

  • PDF

Chemical Genomics and Medicinal Systems Biology: Chemical Control of Genomic Networks in Human Systems Biology for Innovative Medicine

  • Kim, Tae-Kook
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.53-58
    • /
    • 2004
  • With advances in determining the entire DNA sequence of the human genome, it is now critical to systematically identify the function of a number of genes in the human genome. These biological challenges, especially those in human diseases, should be addressed in human cells in which conventional (e.g. genetic) approaches have been extremely difficult to implement. To overcome this, several approaches have been initiated. This review will focus on the development of a novel 'chemical genetic/genomic approach' that uses small molecules to 'probe and identify' the function of genes in specific biological processes or pathways in human cells. Due to the close relationship of small molecules with drugs, these systematic and integrative studies will lead to the 'medicinal systems biology approach' which is critical to 'formulate and modulate' complex biological (disease) networks by small molecules (drugs) in human bio-systems.

Proposal of Dual Inhibitor Targeting ATPase Domains of Topoisomerase II and Heat Shock Protein 90

  • Jun, Kyu-Yeon;Kwon, Youngjoo
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.453-468
    • /
    • 2016
  • There is a conserved ATPase domain in topoisomerase II (topo II) and heat shock protein 90 (Hsp90) which belong to the GHKL (gyrase, Hsp90, histidine kinase, and MutL) family. The inhibitors that target each of topo II and Hsp90 are intensively studied as anti-cancer drugs since they play very important roles in cell proliferation and survival. Therefore the development of dual targeting anti-cancer drugs for topo II and Hsp90 is suggested to be a promising area. The topo II and Hsp90 inhibitors, known to bind to their ATP binding site, were searched. All the inhibitors investigated were docked to both topo II and Hsp90. Four candidate compounds as possible dual inhibitors were selected by analyzing the molecular docking study. The pharmacophore model of dual inhibitors for topo II and Hsp90 were generated and the design of novel dual inhibitor was proposed.

Tutorial on Drug Development for Central Nervous System

  • Yoon, Hye-Jin;Kim, Jung-Su
    • Interdisciplinary Bio Central
    • /
    • v.2 no.4
    • /
    • pp.9.1-9.5
    • /
    • 2010
  • Many neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, are devastating disorders that affect millions of people worldwide. However, the number of therapeutic options remains severely limited with only symptomatic management therapies available. With the better understanding of the pathogenesis of neurodegenerative diseases, discovery efforts for disease-modifying drugs have increased dramatically in recent years. However, the process of translating basic science discovery into novel therapies is still lagging behind for various reasons. The task of finding new effective drugs targeting central nervous system (CNS) has unique challenges due to blood-brain barrier (BBB). Furthermore, the relatively slow progress of neurodegenerative disorders create another level of difficulty, as clinical trials must be carried out for an extended period of time. This review is intended to provide molecular and cell biologists with working knowledge and resources on CNS drug discovery and development.