• 제목/요약/키워드: Notch Antenna

Search Result 39, Processing Time 0.024 seconds

A Compact UWB Planar Antenna with WLAN Band-Notch Characteristic

  • Park, Dong-Kook;Kwak, Byung-Haw
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.7
    • /
    • pp.857-862
    • /
    • 2007
  • A novel compact ultra wideband(UWB) antenna for UWB application is proposed in this paper. The proposed antenna with $22mm{\times}26mm{\times}1.6mm$ covers the entire UWB bandwidth and has band notch characteristic for the frequency band of $5.15{\sim}5.825GHz$ limited by WLAN. The antenna has a concaved ground plane and staircase shape patch to achieve the wide bandwidth, and has an U shape slot with $\lambda/4$ length to notch the band. The return loss and group delay of the proposed antenna are measured.

A Study on Notched Wi-Fi Bandwidth of Planar Monopole Antenna with Edge (에지를 가진 평면 모노폴 안테나의 무선랜 대역 저지에 관한 연구)

  • Lee, Yun Min;Lee, Jae Choon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.4
    • /
    • pp.43-49
    • /
    • 2013
  • In this paper, it is designed inverted triangle structural planar monopole antenna with edge and rectangle slot for UWB(Ultra Wide Band) communication (3.1~10.6 GHz) and researched in about 5.8 GHz notch structure to prevent interference between UWB systems and existing wireless systems for using Wi-Fi service. The antenna have broadband property structurally through inverted triangle structural planar monopole which have edge. and rectangle form addition planned notch slot of 1 mm and height 0.1 mm. Monopole and ground of proposed antenna exist on coplanar plane, and excite as CPW. It used FR4 epoxy dielectric substrate of ${\varepsilon}r$=4.4, and the size is $20{\times}20{\times}1.6$ mm dimension. The measured results that are obtained return loss under -10 dB through 3.1~10.6 GHz(7.5 GHz) without Wi-Fi bandwidth and maximum gain of 8.44 dBi at E-plane. Radiation pattern is about the same that of dipole antenna at all frequency. And using notch slot and it will be able to confirm the quality which becomes notch from 5.8 GHz which are a radio LAN frequency range.

A Planar Folded Monopole Antenna with Inverted T-Shape Notch in Ground Plane for 4G Mobile Communication (역 T형 노치를 가진 4세대 이동통신용 평면형 폴디드 모노폴 안테나)

  • Shin, Ho-Sub;Choi, In-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.893-895
    • /
    • 2013
  • In this paper, we propose the planar folded monopole antenna with an inverted T-shape notch in ground plane. The proposed antenna is not only varied to a width of inner and outer patch lines to broaden bandwidth, but also it is inserted to a modified inverted T-shape notch with the same length of horizontal and vertical slit, difference of its width is about twice in the ground plane to broaden bandwidth. It is designed and simulated.

  • PDF

Design of UWB Hexagon Patch Antenna with WLAN Notch Band Characteristic (WLAN 노치 대역 특성을 갖는 UWB 육각형 패치 안테나)

  • Kim, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.286-290
    • /
    • 2017
  • In this paper, we have proposed a hexagonal patch UWB antenna with a band notch characteristic where the notch band of 5.15 ~ 5.85 GHz band of WLAN was induced by inserting a circular slit in the patch. The impedance bandwidth of the proposed antenna meet the band width criteria of UWB communication system where is mentioned as frequencies range form 3.1 ~ 11.8 GHz. The characteristic band at 5.2 ~ 5.8 GHz notch band was observed. The radiation pattern of the antenna shows a directinal radiation pattern at $0^{\circ}$ and $180^{\circ}$ in XZ-plane and YZ-plane is an omni-directional pattern, respectively. In addition, it is observed that increase in frequency results in increases of the antenna gain whereas the notch band section is decreased. The proposed antenna was designed TRF-45 substrate with thickness of 1.62 mm, a loss tangent of 0.0035, a relative permittivity of 4.5 and designed were used Ansys Inc. HFSS.

Controllable Band-Notched Slot Antenna for UWB Communication Systems

  • Kueathaweekun, Weerathep;Anantrasirichai, Noppin;Benjangkaprasert, Chawalit;Nakasuwan, Jintana;Wakabayashi, Toshio
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.674-683
    • /
    • 2012
  • We propose a slot antenna consisting of a rectangular slot on the ground plane, fed by a microstrip line with a rectangular-ring-shaped tuning stub that can be deployed in ultra-wideband (UWB) communication systems to avoid interference with wireless local area network (WLAN) communication. Our antenna can achieve a single band-notched property from the 5 GHz frequency to the 6 GHz frequency owing to a controllable band notch that uses L- and J-shaped parasitic elements. The antenna characteristics can be modified to tune the band-notched property (4 GHz to 5 GHz or 6 GHz to 7 GHz) and the bandwidth of the band notch (1 GHz to 2 GHz). Furthermore, the shifted notch with enhanced width of the band notch from 1 GHz to 1.5 GHz is described in this paper. The UWB slot antenna and L- and J-shaped parasitic elements also provide the band-rejection function for reference in the WiMAX (3.5 GHz) and WLAN (5 GHz to 6 GHz) regions of the spectrum. Experiment results evidence the return loss performance, radiation patterns, and antenna gains at different operational frequencies.

Circuit Modeling of Transition from Stripline to Dual Slotline for the Notch Antenna

  • So, Joon-Ho;Kim, Jun-Yeon;Lee, Moon-Que;Cheon, Chang-Yul
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.1
    • /
    • pp.22-29
    • /
    • 2003
  • A circuit model for the transition of stripline to dual slotline and a segmented method to analyze a notch antenna are presented. For the circuit model of the transition, the characteristic impedance, dispersions, and the shorted impedance of dual slotline are calculated and approximated with the closed-form expressions. The segmented analysis method allows to get readily an optimized results for the dual slotline-fed notch antenna. As a design example, a notch antenna is segmented into a 4'h order Marchand balun and a dual slot 134 notch antenna, and tested to show the validity of the proposed circuit model.

  • PDF

Design of a UWB Antenna with Band-Notch Function

  • Fanli, Zeng;Lee, Jae-Won;Kim, Chul-Hee;Choi, Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • In this paper, a compact wideband antenna with a band-notch function is proposed. It operates over the UWB band with a band-stop characteristic. To increase the impedance bandwidth, a ring-shaped radiator is used. By attaching a circular stub to the ring-shaped radiator, the band-notch performance is obtained. The proposed antenna operates over a frequency range from 2.7 GHz to 11 GHz to satisfy the 10-dB return-loss requirement and provides band-stop performance in the frequency band from 5.15 GHz to 6.1 GHz. Experimental results reveal that the proposed antenna exhibits good radiation performance and is suitable for UWB applications.

The Characteristics of Wide-Band/Wide-Scan E-plane Notch Phased Array Antenna

  • Kim, Jun-Yeon;So, Joon-Ho;Lee, Moon-Que;Cheon, Chang-Yul
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.5
    • /
    • pp.194-198
    • /
    • 2003
  • A wide-band E-plane notch phased array antenna having bandwidths of 3:1 and a scan volume of $\pm$ 45 is designed considering the active element pattern (AEP) with analysis of the full structure of E-plane notch phased array antenna. Using the numerical E-plane waveguide simulator as an infinite linear array in the broadside angle, the active reflection coefficient (ARC) of the unit element is optimized in the design frequency range. To evaluate the convergence of the AEP, the simulation of full array as changing the number array is investigated, and the minimum numbers of array that have characteristics similar to the AEP of an infinite array are determined.

Ultra-Wideband Antenna Having a Frequency Band Notch Characteristic (주파수 대역 저지 특성을 갖는 초광대역 안테나)

  • Choi Woo-Young;Jung Ji-Hak;Chung Kyung-Ho;Choi Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.199-203
    • /
    • 2005
  • In this paper, a novel compact and frequency band-notch antenna for Ultra-Wideband(UWB) applications is proposed. The designed antenna not only shows good impedance bandwidth for ultra-wideband but has band notch characteristic for the frequency band of $5.15\~5.825\;GHz$ limited by IEEE 802.1la and HIPERLAN/2. To achieve both properties of wide band and band notch, the techniques of a concaved ground plane and inserted U-shaped thin slot into planar radiator are used respectively. A manufactured antenna satisfied VSWR<2 for the frequency band of $2.95\~11.7\GHz$ except the limited band of $4.92\~5.866\;GHz$.

Design of a Multiple Band-notched Wideband Circular Slot Antenna with Arc-shaped Slots

  • Yeo, Junho;Park, Cheol-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • A design method to achieve multiple band-rejection characteristics in a wideband circular slot antenna is presented. First, a wideband circular slot antenna fed by a coplanar waveguide is designed to operate in the frequency range between 2.3 and 11GHz, which covers WLAN, WiBro, WiMAX, and UWB frequency bands. Next, resonant frequency variations of rejection bands are examined with respect to different slot locations and lengths when slots are inserted on the ground conductor and the circular patch of the antenna. When arc-shaped slots are placed close to the circular transition from a feeding part, multiple notch bands are obtained. In this case, a half of the guided wavelength of the first notch band corresponds to the slot length and other notch bands are integer-multiple of the first band. Single notch band can be obtained when the slot is located off the transition part. Based on this study, a wideband circular slot antenna with five band-rejection frequency bands at 2.45, 3.5, 4.9, 7.35, and 9.8GHz is designed and fabricated. The first arc-shaped slots are located in the ground conductor close to the circular transition from a feeding part to generate notch bands at 2.45, 4.9, 7.35, and 9.8GHz, while the second slot for 3.73 GHz is placed on top side in the circular patch. The proposed design method is validated by good agreement between the simulated and measured results.