• 제목/요약/키워드: Northern East China Sea

검색결과 137건 처리시간 0.027초

Paleoenvironmental Changes in the Northern East China Sea and the Yellow Sea During the Last 60 ka

  • Nam, Seung-Il;Chang, Jeong-Hae;Yoo, Dong-Geun
    • 한국제4기학회지
    • /
    • 제17권2호
    • /
    • pp.165-165
    • /
    • 2003
  • A borehole core ECSDP-102 (about 68.5 m long) has been investigated to get information on paleoenvironmental changes in response to the sea-level fluctuations during the period of late Quaternary. Several AMS $\^$14/C ages show that the core ECSDP-102 recorded the depositional environments of the northern East China Sea for approximately 60 ka. The Yangtze River discharged huge amounts of sediment into the northern East China Sea during the marine isotope stage (MIS) 3. In particular, $\delta$$\^$13/Corg values reveal that the sedimentary environments of the northern East China Sea, which is similar to the Holocene conditions, have taken place three times during the MIS 3. It is supported by the relatively enriched $\delta$$\^$13/Corg values of -23 to -21$\textperthousand$ during the marine settings of MIS 3 that are characterized by the predominance of marine organic matter akin to the Holocene. Furthermore, we investigated the three Holocene sediment cores, ECSDP-101, ECSDP-101 and YMGR-102, taken from the northern East China Sea off the mouth of the Yangtze River and from the southern Yellow Sea, respectively. Our study was focused primarily on the onset of the post-glacial marine transgression and the reconstructing of paleoenvironmental changes in the East China Sea and the Yellow Sea during the Holocene. AMS $\^$14/C ages indicate that the northern East China Sea and the southern Yellow Sea began to have been flooded at about 13.2 ka BP which is in agreement with the initial marine transgression of the central Yellow Sea (core CC-02). $\delta$$\^$18/O and $\delta$$\^$13/C records of benthic foraminifera Ammonia ketienziensis and $\delta$$\^$13/Corg values provide information on paleoenvironmental changes from brackish (estuarine) to modem marine conditions caused by globally rapid sea-level rise since the last deglaciation. Termination 1 (T1) ended at about 9.0-8.7 ka BP in the southern and central Yellow Sea, whereas T1 lasted until about 6.8 ka BP in the northern East China Sea. This time lag between the two seas indicates that the timing of the post-glacial marine transgression seems to have been primarily influenced by the bathymetry. The present marine regimes in the northern East China Sea and the whole Yellow Sea have been contemporaneously established at about 6.0 ka BP. This is strongly supported by remarkably changes in occurrence of benthic foraminiferal assemblages, $\delta$$\^$18/O and $\delta$$\^$13/C compositions of A. ketienziensis, TOC content and $\delta$$\^$13/Corg values. The $\delta$$\^$18/O values of A. ketienziensis show a distinct shift to heavier values of about 1$\textperthousand$ from the northern East China Sea through the southern to central Yellow Sea. The northward shift of $\^$18/O enrichment may reflect gradually decrease of the bottom water temperature in the northern East China Sea and the Yellow Sea.

  • PDF

황해 중앙부와 동중국해 북부 해역에서의 대형 독성 노무라입깃해파리의 개체군 특성 연구 (Population Characteristics of the Venomous Giant Jellyfish, Nemopilema nomurai, found in the Yellow and Northern East China Seas)

  • 장수정;기장서
    • 한국환경과학회지
    • /
    • 제33권1호
    • /
    • pp.87-95
    • /
    • 2024
  • The giant jellyfish, Nemopilema nomurai, is an endemic species found in Northeast Asian waters and their population structures, such as size and genetics, and their environmental characteristics were investigated. N. nomurai was obtained from the Yellow and Northern East China Seas during the summers of 2006, 2007, and 2009. In the northern Yellow Sea, small-sized jellyfish were found to be dominant and towards the southern seas, the size of the jellyfish increased. In the northern East China Sea, only one mode of jellyfish was found in May, and the number of modes increased up-to five in July. However, at the center of the Yellow Sea, one or two modes were found in July, 2007. Thus, different jellyfish populations were present in the northern East China Sea and the Yellow Sea. However, based on first appearance and a cohort analysis using the bell diameter, the jellyfish population in the northern Yellow Sea might be recognized as a distinct group that differed from those found in the northern East China Sea. Furthermore, mitochondrial DNA sequences (cytochrome c oxidase subunit I) of N. nomurai were, determined and compared with genetic structures obtained from jellyfish in the Yellow Sea. The genetic diversity of N. nomurai was highest in the regions around the northern East China Sea and at the center of the Yellow Sea and was the lowest around the northern Yellow Sea. Thus, N. nomurai populations in the Yellow Sea and northern East China Sea might be different concerning their seeding places.

동중국해 북부 해역 표층의 평균적 해황과 chlorophyll-α의 분포 (Mean Characteristics of Temperature, Salinity and Chlorophyll-α at the Surface Water in the Northern East China Sea)

  • 최용규;서영상;성기탁;윤원득;김상우
    • 한국환경과학회지
    • /
    • 제17권2호
    • /
    • pp.141-148
    • /
    • 2008
  • In order to investigate the effect of inflow of Yangze river on the distribution of chlorophyll-${\alpha}$, the results of serial oceanographic observation during 2000-2005 were used. The oceanographic conditions in the northern East China Sea is influenced by the Tsushima Warm Current and low saline water derived from the Yangze river. The distributions of these water masses vary significantly by the season in the northern East China Sea. The sea surface temperature and salinity were stable and concentrations of chlorophyll-${\alpha}$ were low in the eastern part of $126^{\circ}E$. On the contrary, the salinity was significantly influenced by the low saline water derived from Yangze river with the high concentrations of chlorophyll-${\alpha}$. It is suggested that the low saline water inflowed from the Yangze river affects high concentrations of chlorophyll-${\alpha}$ in the northern East China Sea in summer.

동중국해 북부해역에서 여름동안 영양염, 엽록소, 부유물질의 분포 특성 및 연간 변화 (The Distribution and Interannual Variation in Nutrients, Chlorophyll-a, and Suspended Solids in the Northern East China Sea during the Summer)

  • 김동선;김경희;심정희;유신재
    • Ocean and Polar Research
    • /
    • 제29권3호
    • /
    • pp.193-204
    • /
    • 2007
  • In order to find out the annual variations in the marine ecosystem of the East China Sea, temperature, salinity, nutrients, chlorophyll-a, suspended solids, and suspended particulate organic carbon were extensively investigated in the northern East China Sea during the Summer of 2003 and 2006. During the Summer of 2003, the northern East China Sea was not significantly affected by the input of fresh waters from the Changjiang River. During the Summer of 2006, however, fresh waters of the Changjiang River intruded into the western part of the study area where temperature, nitrate, and phosphate in the surface waters were higher than in the other areas, and salinity, silicate, and suspended solids in the surface waters were lower. As a result of the increase in nitrate and phosphate concentrations, concentrations of chlorophyll-a and suspended particulate organic carbon increased in the western part compared with the other areas. However, the depth-integrated chlorophyll-a concentrations measured during the Summer of 2003 were rather similar to those during the Summer of 2006, and not considerably different from those measured in the East China sea during the Summer of 1994 and 1998. Therefore, the depth-integrated chlorophyll-a concentrations have not significantly changed in the East China Sea over the last 12 years. The lower concentrations of silicate and suspended solids in the western part may be related to construction of the Three-Gorges Dam since the concentrations of silicate and suspended solids in fresh waters of the Changjiang River have significantly decreased after construction of the Three-Gorges Dam in June 2003.

북부 동중국해 수괴 변화 감시를 위한 유종섬모류 분포 적용 (Using Tintinnid Distribution for Monitoring Water Mass Changes in the Northern East China Sea)

  • 김영옥;노재훈;이태희;장풍국;주세종;최동림
    • Ocean and Polar Research
    • /
    • 제34권2호
    • /
    • pp.219-228
    • /
    • 2012
  • Tintinnid species distribution has been monitored in the northern East China Sea (ECS) in the summer of 2006 through 2011. This is used to understand the water mass movements in the northern ECS. The warm oceanic tintinnid species had largely spread in 2007 in the area, indicating that there was greater warm water extension into the northern ECS. However the extension of neritic water within the Changjiang diluted water mass has strengthened in 2008 and 2010 because the neritic species distribution had relatively grown in both years. These annual results based on the biological indicators of tintinnid species are well matched with the salinity change in the area. The warm oceanic species, Dadayiella ganymedes had frequently occurred over the study years and had shown a significant relationship with the salinity change. This is valuable as a key stone species for monitoring the intrusion of the Kuroshio within the northern ECS. Information from tintinnid biological indicators can support physical oceanography data to confirm ambiguous water mass properties.

Aquarius 염분 관측 위성에 의한 동해 저염수의 형성과 유동 연구 (Formation and Distribution of Low Salinity Water in East Sea Observed from the Aquarius Satellite)

  • 이동규
    • 한국수산과학회지
    • /
    • 제51권2호
    • /
    • pp.187-198
    • /
    • 2018
  • The monthly salinity maps from Aquarius satellite covering the entire East Sea were produced to analyze the low-salinity water appearing in fall every year. The low-salinity water in the northern East Sea began to appear in May-June, spreading southward along the coast and eastward north of the subpolar front. Low-salinity water from the East China Sea entered the East Sea through the Korea Strait from July to September and was mixed with low-salinity water from the northern East Sea in the Ulleung Basin. The strength of the low-salinity water from the East China Sea was dependent on the strength of the southerly wind of the East China Sea in July-August. The salinity reaches a minimum in September with a distribution parallel to the latitude of $37.5^{\circ}N$. In October, low salinity water is distributed along the mean current path and subpolar front and the entire East Sea is covered with the low salinity water in November. Water with salinity larger than 34 psu starts to flow into the East Sea through the Korea Strait in December and it expands gradually northward up to the subpolar front in January- February.

2013-2014년 한국주변해역 수온과 살오징어 유생분포 (Distribution of Water Temperature and Common Squid Todarodes pacificus Paralavae around Korean Waters in 2013, 2014)

  • 김윤하;이충일
    • 해양환경안전학회지
    • /
    • 제22권1호
    • /
    • pp.11-19
    • /
    • 2016
  • 한국 주변 해역에서 수온과 살오징어 유생 분포와의 관계를 파악하기 위해 서해 중부(2013년 8월), 동중국해 북부(2013년 8월), 동해 남부연안(2013년 6월, 11월, 2014년 4월, 5월, 6월, 8월, 9월) 등 3개 해역에서 유생 채집과 CTD 조사를 하였다. 유생 채집은 망구 직경 60 cm, 망목 $333{\mu}m$의 Bongo net를 조사선 속도 2-3 knot에 맞춰 저층 부근에서 표층까지 경사채집(oblique tow) 하였다. 서해 중부에서는 오징어 유생이 발견되지 않았으며, 동중국해 북부에서는 외투장 1.0 mm의 1 개체가 발견되었다. 동해에서는 총 39 개체의 유생이 발견되었으며, 외투장 범위는 1.9-13.5 mm이다. 2013년 8월 서해 중부의 표층 수온은 약 $30^{\circ}C$인 반면 30 m 이하에서는 $10^{\circ}C$ 이하로 낮게 나타나 살오징어 유생의 생존에 적합한 수온($15-24^{\circ}C$)의 공간적 분포가 좁았다. 동중국해 북부의 표층 수온은 $31^{\circ}C$에 이르는 고온이며, 50 m 이하 수심에서도 $20^{\circ}C$ 이상의 수온이 분포하여 비교적 깊은 수심에 유생이 분포하는 것으로 추정되었다. 동해 남부 연안에서는 관측기간 동안 유생의 생존에 적합한 수온이 75 m보다 얕았다.

Detection of low Salinity Water in the Northern East China Sea During Summer using Ocean Color Remote Sensing

  • Suh, Young-Sang;Jang, Lee-Hyun;Lee, Na-Kyung
    • 대한원격탐사학회지
    • /
    • 제20권3호
    • /
    • pp.153-162
    • /
    • 2004
  • In the summer of 1998-2001, a huge flood occurred in the Yangtze River in the eastern China. Low salinity water less than 28 psu from the river was detected around the southwestern part of the Jeju Island, which is located in the southern part of the Korean Peninsula. We studied how to detect low salinity water from the Yangtze River, that cause a terrible damage to the Korean fisheries. We established a relationships between low salinity at surface, turbid water from the Yangtze River and digital ocean color remotely sensed data of SeaWiFS sensor in the northern East China Sea, in the summer of 1998, 1999, 2000 and 2001. The salinity charts of the northern East China Sea were created by regeneration of the satellite ocean color data using the empirical formula from the relationships between in situ low salinity, in situ measured turbid water with transparency and SeaWiFS ocean color data (normalized water leaving radiance of 490 nm/555 nm).

동중국해 북부해역에서 음파전달 특성의 시공간적 변동성 (Temporal and Spatial Variability of Sound Propagation Characteristics in the Northern East China Sea)

  • 박경주;피터추
    • 한국군사과학기술학회지
    • /
    • 제18권2호
    • /
    • pp.201-211
    • /
    • 2015
  • Acoustic propagation in shallow water with changing environments is a major concern of navy. Temporal and spatial variability of acoustic propagation in the northern East China Sea (ECS) is studied, using the 11 years hydrographic data and the Bellhop acoustic model. Acoustic propagation in the northern ECS is highly variable due to extensive interaction of various ocean currents and boundaries. Seasonal variations of transmission loss (TL) with various source depths are highly affected by sharp gradient of sound speed and bottoms interaction. Especially, various bottom sediment types lead to severely degrading a waterborne propagation with bottom loss. In particular, the highly increased TL near the ocean front depends on the source position, and the direction of sound propagation.

동중국해 북부해역에서 부유물질과 입자성유기탄소의 분포 특성 및 연간 변화 (The Distribution and Interannual Variation in Suspended Solid and Particulate Organic Carbon in the Northern East China Sea)

  • 김동선;최상화;김경희;김철호
    • Ocean and Polar Research
    • /
    • 제31권2호
    • /
    • pp.219-229
    • /
    • 2009
  • In order to establish annual variations in the marine ecosystem of the East China Sea, suspended solids (SSs) and particulate organic carbon (POC) were extensively investigated in the northern part of the East China Sea from August 2003 to April 2008. Surface SS concentrations showed large spatial variations in spring and fall, but not in summer. Surface SS concentrations in spring were lower than those in summer and fall. In summer, SSs discharged from Changjiang were mostly deposited in the coastal areas and did not reach our study area which was located about 260 km from the river mouth. High SS concentrations were observed near the bottom, which resulted from resuspension of bottom sediments by the bottom currents. Surface POC concentrations did not exhibited large seasonal variations. Phytoplankton biomass was a main factor controlling surface POC concentrations. POC/chlorophyll ratios showed large seasonal variations, with maximum numbers in summer. POC/PON ratios were higher in summer than the Redefied ratio (6.6), while they were lower in spring and fall. In summer, higher POC/chlorophyll and POC/PON ratios were probably attributed to the high phytoplankton mortality caused by nutrient depletion in surface waters.