• Title/Summary/Keyword: Normally consolidated

Search Result 109, Processing Time 0.023 seconds

Study on the Undrained Shear Strength Characteristics (반월지역 해성점토의 비배수 전단강도 특성에 관한 연구)

  • 장병욱;박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.90-99
    • /
    • 1994
  • To investigate the undrained shear strength characteristics of marine soils with high water content, high compressibility and weak bearing capacity, a series of undrained triaxial tests with pore pressure measurements on undisturbed and disturbed Banwol marine clay in normally consolidated and overconsolidated states is carried out. The results and main conclusions of this study are summarized as follows : 1 . When the consolidation pressure is increased, the maximum deviator stress of disturbed and undistubed clay in normally consolidated state is increased. Pore pressure parameters and internal friction angle of undisturbed clay are greater than those of disturbed clay. 2. The relationship between pore pressure and axial strain of undisturbed clay in normally consolidated state can be expressed as a hyperbolic function like stress-strain relation proposed by Kondner. 3. In the pore pressure-axial strain relation of disturbed clay in normally consolidated state, failure ratio R'f is greatly deviated in the range of 0.7~0.9 proposed by Christian and Desai. 4. For overconsolided clay, when overconsolidation ratio (OCR) is increased, normalized maximum deviator stress is increased and maximum pore pressure is decreased gradually. 5. Cohesion of overconsolidated clay is greater than that of nomally consolidated clay and internal friction angle slightly is decreased. 6. Pore pressure parameter at failure (Af) of overconsolidated clay is varied with OCR, Af becomes negative values with increment in OCR

  • PDF

A Study on the Characteristics of Consolidation of Soils (I) (The Influence of Pre-consolidation Load of Soils on Consolidation Characteristics) (압밀특성에 관한 연구 (I) (선행하중이 압밀특성에 주는 영향))

  • 류능환;강예묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.4
    • /
    • pp.4242-4250
    • /
    • 1976
  • The determination of the pre-consolidation load known to have a great effect on the consolidation characteristics of the soil have been researched and discussed in detail by many other researchers. A study was undertaken to investigate and compare the effect of pre-consolidation loads on the coefficient of permeability and the consolidation characterisics of soil through the consolidation test on the three types of soil samples. The results of this study are follows; 1. Large compression index is dependent on initial void ratio of the sample being used and the pressure-void ratio curve shows a curved linear relationship in over-consolidated area but a linear relationship in normally consolidated area.2. Settlement-time curve is S-shaped where the pressure is larger than pre-consolidation load and regardless of over-burden pressure, it is a similar straight line respectively in the secondary consolidation area. 3. Primary consolidation ratio of the sample increases almost linearly with the increase of over-burden pressure but the coefficient of volume compressibility decreases linearly with the increase of it. 4. Time factor of a certain degree of consolidation increases with over-burden pressure but the coefficient of consolidation decreases with it in over-consolidated area. There is a linear relationship between them in normally consolidated area. 5. The void ratio of completion point of primary consolidation decreases linearly with over-burden pressure. 6. The coefficient of permeability of sample decreases linearly with over-burden pressure in normally consolidated area, also it increases linearly with increment of the void ratio of the sample.

  • PDF

A Prediction of the Behavior in Normally Consolidated Clay with Application of Isotropic Single Hardening Constitutive Model (등방단일경화구성모델에 의한 정규압밀점토의 거동 예측)

  • 홍원표;남정만
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.9-18
    • /
    • 1996
  • The results of a series of triaxial compression tests on remolded normally consolidated clay are compared with the predictions .by the isotropic single -hardening constitutive model, which incorporates eleven parameters. The parameters can be determined from undrained triaxial compression tests on isotropically consolidated specimens of remolded clay. The model with the determined parameters is applied to predict the stress-strain and pore pressure behaviors for untrained triaxial compresion tests on anisotropically consolidated specimens. Also the model is utilized to predict the stress strain and voltmetric strain behavior for drained triaxial compression tests on both isotropic and anisotropic specimens. The predicted response agrees well with the measured behavior for undrained triaxial compression tests on not only isotropically but also anisotroically but also anisotropically consolidated specimens. The initial volumetric strain is, however, predicted to be less than the measured value from drained triaxial compression tests, while the predicted volumetric strain close to failure is greater than the measured value. Nevertheless, it may be stated generally that overall acceptable predictions are produced. Therefore, the results of this study indicate that the applicability of the model on prediction of the behavior of normally consolidated clay is achieved sufficiently.

  • PDF

Undrained Behavior of $K_0$ Consolidated Clay due to Strain Rate ($K_0$ 압밀 점토의 변형율 의존 비배수 전단거동)

  • Kim, Jin-Won;Lee, Chang-Ho;Lee, Moon-Ju;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1039-1046
    • /
    • 2005
  • After clay particles have been sediment isotropically, the clay deposits have been consolidated under $K_0$-stress system. Therefore, in order to predict the behavior in-situ of normally consolidated clays, the laboratory test should be enforced under $K_0$-stress system and should obtain the characteristics of normally consolidated clays. And relationship of stress-strain on clay is effected on not only method of consolidation but also characteristic of visco-plastic behavior. Saturated clay is effected more this trend. So, rate of strain is considered to understand exact stress-strain relationship. In this study, the series of undrained triaxial compression tests were preformed on remolded specimens which was made by slurry of clay, consolidated under $K_0$-stress systems. And the undrained triaxial compression test were preformed to examine behavior of stress-strain relationship due to rate of shear strain relationship due to rate of shear strain.

  • PDF

Behavior of the Embankment on Normally Consolidated Clay Supported by the Piled Raft (Piled Raft 기초로 지지된 연약지반 상의 제방의 거동)

  • Kim, Sang-Kyu;Song, Sun-Ok;Han, Sung-Gil;Jeon, Jin-Kyu;Lee, Wan-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.4
    • /
    • pp.33-41
    • /
    • 2011
  • A railway embankment route extending to 2 km was laid on normally consolidated clay in the West Gimhae Plain. This embankment was first built using the stage-construction technique, but longitudinal cracks suggesting arc sliding appeared on the surface of the embankment immediately after the first stage of its construction. As an alternative, the piled raft was installed on the failed embankment and then the remaining height of the embankment was raised. The behavior of the piled raft was monitored with different instruments during construction. This paper describes the monitoring results and analyses. The results show that if the pile group essentially exhibits the behavior of friction piles, the piled raft foundation performs well even in normally consolidated soft clay.

Prediction of Undrained Shear Strength of Normally Consolidated Clay with Varying Consolidation Pressure Ratios Using Artificial Neural Networks (인공신경회로망을 이용한 압밀응력비에 따른 정규압밀점토의 비배수전단강도 예측)

  • 이윤규;윤여원;강병희
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.75-81
    • /
    • 2000
  • The anisotropy of soils has an important effect on stress-strain behavior. In this study, an attempt has been made to implement artificial neural network model for modeling the stress-strain relationship and predicting the undrained shear strength of normally consolidated clay with varying consolidation pressure ratios. The multi-layer neural network model, adopted in this study, utilizes the error back-propagation loaming algorithm. The artificial neural networks use the results of undrained triaxial test with various consolidation pressure ratios and different effective vertical consolidation pressure fur learning and testing data. After learning from a set of actual laboratory testing data, the neural network model predictions of the undrained shear strength of the normally consolidated clay are found to agree well with actual measurements. The predicted values by the artificial neural network model have a determination coefficient$(r^2)$ above 0.973 compared with the measured data. Therefore, this results show a positive potential for the applications of well-trained neural network model in predicting the undrained shear strength of cohesive soils.

  • PDF

Disturbance Effects on the Stiffness of Normally Consolidated Clay (정규압밀 점성토의 교란에 따른 강성 변화)

  • Park, Hae-Yong;Shin, Hyun-Young;Oh, Myoung-Hak;Cho, Wan-Jei
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.7
    • /
    • pp.69-79
    • /
    • 2011
  • Laboratory tests are generally used to determine the input parameters for the selected constitutive models controlling various stress and drainage conditions, but have disadvantages in that the tests are performed on the samples obtained from the bore hole which are prone to be disturbed by various factors such as the tube penetrations, sample preparations and storage. To overcome these disadvantages, it is necessary to understand the effect of disturbance on the stiffness of the sample, especially the normally consolidated clays which are generally considered as soft clays. Therefore, in this study triaxial tests are performed on the normally consolidated kaolinite to evaluate the sample disturbance effects on the stiffness and to determine the field representative input parameters. The stress path results show that the shear and coupling modulus degradation patterns with strain are affected seriously by the disturbance. However, the strengths of the normally consolidated kaolinite are little influenced by the disturbance.

Analysis on the Consolidation Behavior of the Smeared Soil Considering Vertical Drain Spacing (스미어 발생지반에서 배수재 간격비에 따른 압밀거동 분석)

  • Kang, Hee-Woong;Yune, Chan-Young;Jung, Young-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.141-146
    • /
    • 2010
  • To investigate the effect of drainage spacing and smear on the rate of consolidation, a large consolidation chamber and mandrel insertion device were developed. After the occurrence of smear by installation of sand drain, model ground was consolidated in either overconsolidated or normally consolidated state. As smear effect increases and thus drain spacing decreases, total settlement increase in overconsolidated state but has no effect in normally consolidated state. Efficiency of vertical drain decreases and consequently consolidation time increases in all tests as smear effect becomes significant.

  • PDF

The Influence of Deformation Modes on the Coefficient of Consolidation in the Normally Consolidated Clay (변형형상에 따른 정규압밀 점성토의 압밀계수 변화)

  • Park, Jae-Hyeon;Jeong, Young-Hoon;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.823-830
    • /
    • 2004
  • Consolidation tests under various deformation modes were performed to investigate the effect of deformation modes on the coefficient of consolidation in the normally consolidated clay in remolded and undisturbed clay. The degree of soil anisotropy was evaluated using cross-anisotropic elasticity theory suggested by Graham et al.(1983). Experimental results showed that the vertical compressibility was larger than the horizontal compressibility by $12{\sim}21%$ for the remolded clay and by $23{\sim}60%$ for the undisturbed clay, respectively. The results of a series of consolidation tests under the specific deformation modes showed that the coefficient of consolidation under 1 dimensional vertical strain condition was larger than that under 3 dimensional strain condition due to different deformation mode. Furthermore, the coefficient of consolidation under 1 dimensional vertical strain condition was larger than that under 1 dimensional horizontal strain condition by $40{\sim}60%$ in undisturbed clay, which clearly emphasized the significant effect of soil anisotropy on the rate of consolidation. Consequently, it can be concluded that the anisotropic deformation modes of soils, especially naturally deposited clays, should be taken into account for more accurate evaluation of the coefficient of consolidation.

  • PDF

The Characteristics of Consolidation and Permeability in Normally Consolidated Region Using a Remolded Decomposed Mudstone Soil (재성형된 이암풍화토를 이용한 정규압밀영역의 압밀 및 투수특성)

  • 김영수;김기영;이상웅
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.61-70
    • /
    • 2000
  • When clay foundations of embankments are treated with vertical drain, essentially, the strain occurs to vertical direction but the water flow is radial. The initial horizontal permeability and its variation with the vertical compression are key parameters for the choice of the type of drains, their spacing, and affect to the cost of the project. In this study, CRS consolidation test is performed to investigate the anisotropic characteristics of decomposed mudstone soil and direct permeability test is performed on the same specimens. The results of testing show that Ch is larger than Cv. specially, the Cv - $\sigma$v relationship for a soil sample is viewed from three different curve segments corresponding to overconsolidated, transition and normally consolidated states. The anisotropic ratio, rk(kh/kv) is 2.19. Coefficient of permeability in normally consolidated state is related to its void ratio and permeability parameter n. C can be determined from a linear plot of log[k(1+e)] versus log e. The slope, n, of graphs is the same, whereas the vertical intercept, log C, seems to vary somewhat for anisotropic.

  • PDF