Roya Narimani;Shabbir Ahmed Osmani;Seunghyun Hwang;Changhyun Jun
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.164-164
/
2023
This study investigates the importance of flood-influencing factors on the accuracy of flood risk mapping using the integration of remote sensing-based and machine learning techniques. Here, the Extreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms integrated with GIS-based techniques were considered to develop and generate flood risk maps. For the study area of NAPA County in the United States, rainfall data from the 12 stations, Sentinel-1 SAR, and Sentinel-2 optical images were applied to extract 13 flood-influencing factors including altitude, aspect, slope, topographic wetness index, normalized difference vegetation index, stream power index, sediment transport index, land use/land cover, terrain roughness index, distance from the river, soil, rainfall, and geology. These 13 raster maps were used as input data for the XGBoost and RF algorithms for modeling flood-prone areas using ArcGIS, Python, and R. As results, it indicates that XGBoost showed better performance than RF in modeling flood-prone areas with an ROC of 97.45%, Kappa of 93.65%, and accuracy score of 96.83% compared to RF's 82.21%, 70.54%, and 88%, respectively. In conclusion, XGBoost is more efficient than RF for flood risk mapping and can be potentially utilized for flood mitigation strategies. It should be noted that all flood influencing factors had a positive effect, but altitude, slope, and rainfall were the most influential features in modeling flood risk maps using XGBoost.
Kim, Eunju;Nam, Sookhyun;Koo, Jae-Wuk;Lee, Saromi;Ahn, Changhyuk;Park, Jerhoh;Park, Jungil;Hwang, Tae-Mun
Journal of Korean Society of Water and Wastewater
/
v.31
no.3
/
pp.197-204
/
2017
This study was carried out to apply the UAV(Unmanned Aerial Vehicle) coupled with Multispectral sensor for the algae bloom monitoring in river. The study acquired remote sensing data using UAV on the midstream area of Gum River, one of four major rivers in South Korea. Normalized difference vegetation index (NDVI) is used for monitoring algae change. This study conducted water sampling and analysis in the field for correlating with NDVI values. Among the samples analyzed, the chlorophyll concentration exhibited strong and significant linear relationships with NDVI, and thus NDVI was chosen for algae bloom index to identify emergence aspect of phytoplankton in river. Aerial remote sensing technology can provide more accurate, flexible, cheaper, and faster monitoring methods of detecting and predicting eutrophication and therefore cyanobacteria bloom in water reservoirs compared to currently used technology. As a result, there was high level of correlation in chlorophyll-a and NDVI. It is expected that when this remote water quality and pollution monitoring technology is applied in the field, it would be able to improve capabilities to deal with the river water quality and pollution at the early stage.
The tidal channel is a coastal sedimentary terrain that plays the most important role in the formation and development of tidal flats, and is considered a very important index for understanding and distribution of tidal flat sedimentation/erosion terrain. The purpose of this study is to understand the changes in tidal channels by a period after the opening of the floodgate of the seawall in the reclaimed land of Sihwa Lake using KOMPSAT high-resolution multispectral satellite image data and to evaluate the applicability and efficiency of high-resolution satellite images. KOMPSAT 2 and 3 images were used for extraction of the tidal channels' lineaments in 2009, 2014, and 2019 and were applied to supervised classification method based on Principal Component Analysis (PCA), Artificial Neural Net (ANN), Matched Filtering (MF), and Spectral Angle Mapper (SAM) and band ratio techniques using Normalized Difference Water Index (NDWI) and MF/SAM. For verification, a numerical map of the National Geographic Information Service and Landsat 7 ETM+ image data were utilized. As a result, KOMPSAT data showed great agreement with the verification data compared to the Landsat 7 images for detecting a direction and distribution pattern of the tidal channels. However, it has been confirmed that there will be limitations in identifying the distribution of tidal channels' density and providing meaningful information related to the development of the sedimentary process. This research is expected to present the possibility of utilizing KOMPSAT image-based high-resolution remote exploration as a way of responding to domestic intertidal environmental issues, and to be used as basic research for providing multi-platform-image-based convergent thematic maps and topics.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.52-52
/
2023
저수지는 기존의 육상 수지에 직접적인 영향 뿐 만 아니라 수체가 육상에 머무르는 시간을 늘려 수온 및 수질에는 영향을 미친다. 이들이 환경 및 지역 기후 변화에 직접적인 영향을 미치는 주요인자로 기후 변화에 미치는 긍정적, 부정적 효과와 함께 중요성이 더 증대되고 있다. 위성 원격탐사는 북한 지역 등과 같은 현장 관측 자료의 수집이 어려운 지역을 포함한 전 지구 규모에서 저수량 변화를 추정하는데 유용한 자료를 제공한다. 우리는 광학 위성 (Landsat-8/9)과 능동형 마이크로파 위성 (Sentinel-1)를 활용해 한반도 지역에 분포하고 있는 저수지의 수체 면적을 산출하기 위해 2020년부터 2022년까지 자료를 수집했다. 저수지 표면적 산출은 전통적인 NDWI (Normalized Difference Water Index) 및 후방산란계수 (𝜎0)에 multi-Otsu 방법을 적용하여 이진화 영상을 얻는 방식을 이용했다. 여전히 남아있는 과탐지 영역은 최대 표면적 영상과 상대 비교를 통해 제거했다. Landsat과 Sentinel-1 위성 원격 탐사 자료 기반 저수지 표면적은 높은 유사성이 있었고, 현장 및 위성 고도계 자료 기반 수면 고도 변화와 높은 관계성를 보여주었다. 실험을 통해 위성 원격탐사 자료를 활용한 한반도 지역 저수지의 저수량 변화을 추정했으며, 현장 관측자료와 비교했다. 이 추정 기술은 전 지구 저수지 및 호수로 확장할 수 있으며, 수문 모델의 검증자료 등으로 활용될 수 있다.
KIM, Seon-Woo;KWON, Yong-Ha;CHUNG, Youn-In;CHOUNG, Yun-Jae
Journal of the Korean Association of Geographic Information Studies
/
v.25
no.2
/
pp.88-99
/
2022
The river network is one of the essential topographical characteristics in river management. The river network which as previously constructed by the ground surveying method has recently begun to be efficiently constructed using the remote sensing datasets. Since it is difficult to remove these obstacles such as bridges in the urban rivers, it is rare to construct the urban river networks with the various obstacles. In this study, the Sentinel-2 satellite imagery was used to develop the automatic method for detecting the urban river networks without the obstacles and with the preserved boundaries as follows. First, the normalized difference water index image was generated using the multispectral bands of the given Sentinel-2 satellite imagery, and the binary image that could classify the water body and other regions was generated. Next, the morphological operations were employed for detecting the complete river networks with the obstacles removed and the boundaries preserved. As a result of applying the proposed methodology to Han River in Seoul, the complete river networks with the obstacles removed and the boundaries preserved were well constructed.
Proceedings of the Korea Water Resources Association Conference
/
2009.05a
/
pp.1607-1611
/
2009
본 연구에서는 현재 가뭄을 관측하는데 주로 이용되는 가뭄지수의 단점 등을 보완하고자 가뭄에 관련되는 식생지수를 연계한 공간해상도 높은 가뭄지수를 제시하였다. 우리나라 지상관측을 통해 산출할 수 있는 PDSI(Palmer Drought Severity Index)와 SPI(Standardized Precipitation Index) 같은 가뭄지수는 기온과 강수량 등의 기후자료만을 이용하여 산정할 수 있다. 두 가뭄지수는 관측하기 어려운 가뭄의 시기와 심도를 설명하고자 여러 연구를 통해 개발한 지수이지만, 두 가뭄지수만을 가지고 우리나라 전역의 가뭄의 공간적인 분포를 설명하기에는 다소 무리가 있다. PDSI의 경우 강수량과 기온과 토양의 수분함유량을 가지고 산출하는데, 전 관측지점을 똑같은 토양수분함유량을 가지고 있다는 가정 하에 계산되고, SPI의 경우 강수량만을 이용하여 산정한다. PDSI의 경우 과거의 가뭄의 정도를 판단하는데 매우유용하다고 알려져 있다. 하지만, 현재의 가뭄정도를 나타내는 데는 문제를 가지고 있고, SPI의 경우는 누적강수량을 가지고 시간단위로 계산한다는 점에서 다양한 가뭄의 정도를 예측할 수 있지만, 입력 자료로 강수량만 들어간다는 점에서 약점을 가진다. 이런 기후지수만을 이용한 가뭄정보 생산이 공간정보를 구현하는데 한계를 가지는 문제점을 개선하고자 가뭄에 직간접적으로 관련이 있는 보다 세밀한 공간정보를 가진 식생, 토지이용, 고도 등의 자료와 기후정보로부터 산정된 가뭄지수간의 관계를 분석하였다. 나아가 기존의 기후지수보다 고해상도를 가진 위성의 정규식생지수(NDVI; Normalized Difference Vegetation Index)와 같은 식생지수를 이용하여 기존보다 더 향상된 해상도의 가뭄지수를 산정하고자 하였다. 우리나라 지상관측소 76개 지점 중에 MODIS(Moderate Resolution Imaging Spectroradiometer) 정규식생지수 자료와의 관계를 분석하고자 자료의 보유기간이 짧은 지점과 섬지점 등을 제외한 57개 지점을 선정하고, 연구기간동안의 강수량과 기온자료를 이용하여 PDSI와 SPI를 산출하였다. PDSI와 SPI자료를 고해상도 가뭄지수 산정의 기본 변수로 사용하기 위하여 역거리가중평균법을 이용한 연구기간동안의 한반도 지역 PDSI와 SPI 가뭄지수 지도를 생산하였다. 각각의 가뭄지수와 식생 상태를 나타내는 NDVI와의 상관특성과 계절 변화에 따른 변화특성을 분석하고, CART(Classification and Regression Trees) 알고리즘을 이용하여, 지상 자료만을 사용한 가뭄지수가 가지는 시공간적 변화 특성 제시에 대한 문제점을 개선한 보다 해상도가 높은 조합가뭄지수를 제시하였다.
The objectives of this study were to estimate leaf area index (LAI) as a function of image-derived vegetation indices, and to compare measured and estimated LAI to the results of crop model simulation. Soil moisture, crop phenology, and LAI data were obtained several times during the 2001 growing season at monitoring sites established in two central Missouri experimental fields, one planted to com (Zea mays L.) and the other planted to soybean (Glycine max L.). Hyper- and multi-spectral images at varying spatial. and spectral resolutions were acquired from both airborne and satellite platforms, and data were extracted to calculate standard vegetative indices (normalized difference vegetative index, NDVI; ratio vegetative index, RVI; and soil-adjusted vegetative index, SAVI). When comparing these three indices, regressions for measured LAI were of similar quality $(r^2$ =0.59 to 0.61 for com; $r^2$ =0.66 to 0.68 for soybean) in this single-year dataset. CERES(Crop Environment Resource Synthesis)-Maize and CROPGRO-Soybean models were calibrated to measured soil moisture and yield data and used to simulate LAI over the growing season. The CERES-Maize model over-predicted LAI at all corn monitoring sites. Simulated LAI from CROPGRO-Soybean was similar to observed and image-estimated LA! for most soybean monitoring sites. These results suggest crop growth model predictions might be improved by incorporating image-estimated LAI. Greater improvements might be expected with com than with soybean.
To characterize historical droughts in the conterminous United States (CONUS), we estimated the actual evapotranspiration ($ET_a$) in the CONUS using the generalized complementary relationship (GCR) for 1895-2016. The $ET_a$ estimates were compared against simulations from the Noah land surface model (LSM). In this study, the evapotranspiration (ET) deficit defined as the difference between the wet-environment ET ($ET_w$) and $ET_a$ was then normalized to calculate the Standardized Evapotranspiration Deficit Index (SEDI) across the CONUS for the years 1895-2016. The SEDI was compared to the Standard Precipitation Index (SPI) at various time scales. The results showed that the GCR $ET_a$ was slightly higher than the Noah LSM-simualted $ET_a$. As time scales increased, the correlation between the SEDI and the SPI was higher. This study suggests that the GCR has promise as a tool in the estimation of $ET_a$ and SEDI can be useful for the drought characterization.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.161-161
/
2021
본 연구에서는 금강 상류의 용담댐 유역(930.0 km2)을 대상으로 Sentinel-1 SAR(Synthetic Aperture Radar) 및 Sentinel-2 MultiSpectral Instrument(MSI) 위성영상을 활용한 토양수분 산출연구를 수행하였다. 연구에 사용된 자료는 10 m 해상도의 Sentinel-1 IW(Interferometric Wide swath) mode GRD(Ground Range Detected) product의 VV(Vertical transmit-Vertical receive) 및 VH(Vertical transmit-Horizontal receive) 편파자료와 Sentinel-2 Level-2A Bottom of Atmosphere(BOA) reflectance 자료를 2019년에 대해 각 6일 및 5일 간격으로 구축하였다. 위성영상의 Image processing은 SNAP(SentiNel Application Platform)을 활용하여 Sentinel-1 영상의 편파 별(VV, VH) 후방산란계수와 Sentinel-2의 적색(Band-4) 및 근적외(Band-8) 영상을 생성하였다. 토양수분 산출 모형은 다중선형회귀모형(Multiple Linear Regression Model)을 활용하였으며, 각 지점에 해당하는 토양 속성별로 모형을 생성하였다. 모형의 입력자료는 Sentinel-1 위성의 편파별 후방산란계수, Sentinel-1 위성에서 산출된 식생지수 RVI(Radar Vegetation Index)와 Sentinel-2 위성에서 산출된 NDVI(Normalized Difference Vegetation Index)를 활용하여 식생의 영향을 반영하고자 하였다. 모의 된 토양수분을 검증하기 위해 6개 지점의 TDR(Time Domain Reflectometry) 기반 실측 토양수분 자료를 수집하고, 상관계수(Correlation Coefficient, R), 평균제곱근오차(Root Mean Square Error, RMSE) 및 IOA(Index of Agreement)를 활용하여 전체 기간 및 계절별로 나누어 검증할 예정이다.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.156-156
/
2020
가뭄은 다른 자연재해에 비해 진행 속도가 느리고 발생 시작 시기가 명확하지 않다. 또한 피해지역이 광범위하다는 점에서 사회, 경제적 피해와 농업 생산 시스템 및 수확량 등 농업 전반에 걸쳐 직접적인 영향을 미치고 있다. 전지구적 기후변화로 인해 국내의 가뭄 발생빈도는 2000년 이후 증가하고 있으며, 가뭄의 정량적 분석은 선제적 가뭄 대응을 위해 필요하다. 현재 국내에서는 여러 유관기관에서 지상 관측 데이터를 활용하여 가뭄을 모니터링하고, 가뭄 공간 분포 지도를 제공하고 있다. 하지만 지상 관측 데이터를 통한 가뭄 분포 지도는 미계측 지역에 대한 데이터 취득이 어렵고, 지형학적 특성을 고려하지 못하는 한계점이 있다. 이러한 한계점을 보완하기 위해 수자원 및 재해 분야에서 위성영상이 활용되고 있다. 위성영상을 활용한 가뭄 판단 및 예측에는 정규식생지수 (Normalized Difference Vegetation Index, NDVI)가 사용되고 있으며, 식생지수는 가뭄 발생, 진행 등에 있어 즉각적인 반응이 어렵다는 단점이 있다. 본 연구에서는 잠재 증발산과 실제 증발산의 비를 이용해 산정된 위성영상 기반 가뭄 지수인 Evaporative Stress Index (ESI)를 활용하였다. NASA (National Aeronautics and Space Administration)에서 제공하는 ESI는 전지구를 대상으로 5km 해상도로 제공하고 있다. 하지만 국내 가뭄 판단을 위해서는 높은 해상도의 영상이 필요하며, 본 연구에서는 MODIS (Moderate Resolution Imaging Spectroradiometer) 영상을 활용한 ESI의 산정을 통해 해상도의 문제를 개선하고자 한다. 산정한 500m 해상도의 ESI는 기존 5km 해상도의 ESI와 비교 검증하였으며, SPI 및 과거 가뭄 발생 현황 자료를 근거로 ROC (Receiver Operating Characteristics) 분석을 통해 시군 단위 농업가뭄평가의 적용성을 확인하고 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.