• Title/Summary/Keyword: Normalized Difference Water Index

Search Result 152, Processing Time 0.031 seconds

Estimate Soil Moisutre Using Satelite Image and Data Mining (위성영상과 데이터 마이닝 기법을 이용한 토양수분 산정)

  • Kim, Gwang-Seob;Park, Han-Gyun;Cho, So-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1615-1619
    • /
    • 2010
  • 토양수분은 토양입자에 포함되어 있는 물을 의미하는 것으로 지표면과 대기간의 에너지 균형과 물 순환을 조절하는데 중요한 요소이다. 본 연구에서는 토양수분 산정을 위하여 2003년 1월부터 2008년 12월까지의 MODIS(Moderate Resolution Imaging Spectroradiometer) 위성관측 자료로부터 획득한 정규식생지수(NDVI: Normalized Difference Vegetation Index)자료와 지표면 온도자료, 우리나라 76개소 기상관측소 중에 자료의 보유기간이 30년 이하인 관측소와 섬 지역들을 제외한 57개 지점의 강수량, 토양온도 자료 및 우리나라 전역에 대한 토지피복, 유효토심자료를 이용하여 데이터 마이닝(Data Mining) 기법의 하나인 CART(Classification And Regression Tree) 기법을 이용하여 토양수분을 산정하였다. 먼저 신뢰성 높은 토양수분 관측 자료를 가진 용담댐 유역의 6개 지점에 대하여 토양수분을 산정하여 적용 가능성을 분석하였다. 3개 지점의 토양수분 관측치는 토양수분 산정 모형 수립에 사용하였으며 검증에 사용된 1개 지점의 토양수분의 관측치와 추정치 간의 상관계수를 확인한 결과 전체적인 토양수분의 거동을 잘 나타내고 있어 토양수분 추정 모형의 적용가능성을 확인하였다. 이를 이용하여 용담댐 유역의 토양수분 분포와 우리나라 전역에 대한 토양수분 분포도를 추정하였다. 신뢰할 수 있는 지상관측 토양수분 관측치가 다양한 지상조건에 대하여 존재하지 않는 한계가 있음에도 불구하고 제시된 토양수분산정 방법은 제한된 가용자료를 사용한 우리나라 전역의 토양수분 산정에 있어 합리적인 접근법이라 판단된다.

  • PDF

Verification of Land Surface Temperature using COMS(Communication, Ocean and Meteorological Satellite) (천리안 위성을 이용한 지표면 온도의 검증)

  • Baek, Jong-Jin;Choi, Min-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.99-102
    • /
    • 2012
  • 지표면 온도는 토지피복의 상태, 식생의 분포 상태, 토양수분, 증발산 등의 영향으로 많은 차이를 가지게 되며, 지면-대기의 상호순환의 중요한 인자로써 기후모델 및 농업 등의 기본적인 데이터로 사용되고 있다. 이러한 지표면의 온도를 정확하게 파악하는 것은 수문학적 관점 및 기상적인 관점에서 매우 중요하다. 기존에 LST (Land Surface Temperature, 지표면온도), ET (EvapoTranspiration, 증발산), NDVI (Normalized Difference Vegetation Index, 정규식생지수) 등의 검증이 많이 이루어진 MODIS위성의 Terra/Aqua센서는 한반도를 스캔하고 지나갈 때의 순간적인 데이터를 산출된다. 공간적인 면에서는 많은 이점이 있으나 시간적인 면에서는 시간에 따른 인자들의 변동성을 파악 하는데는 많은 문제가 있다. 그렇기 때문에 시 공간적으로 변화양상을 측정 할 수 있는 정지궤도위성의 중요성이 대두되고 있다. 본 연구에서는 국내에서 2010년 6월 27일 발사된 정지궤도위성인 천리안의 데이터를 활용하였다. 천리안 위성은 기상 센서와 해양관측 센서 그리고 통신센서를 가진 위성이다. 천리안 위성의 기상 센서는 MTSAT-1 위성과 같은 적외선 센서를 탑재하고 있으며, 평시에는 15분 단위의 데이터를 산출하게 된다. 천리안에서 제공되는 많은 Product(강우강도, 해수면온도, 가강수량, 지구방출복사 등)는 수자원 및 기상에 관련된 데이터가 제공된다. 하지만 아직 검증이 많이 이루어지지 못하였다. 그래서 천리안 위성 데이터인 지표면 온도자료를 이용하여 천리안 위성의 효율성에 대해서 알아보고자 하며, 기존의 검증이 많이 이루어진 MODIS의 데이터와의 상관성을 분석하고 지상과의 관계를 검증 및 비교하여 천리안 위성의 활용성에 대해서 알아보려고 한다.

  • PDF

Study of Submarine Groundwater Discharge Detection Using Terra MODIS Satellite Image (Terra MODIS 위성영상을 이용한 해안지하수유출 탐지 연구)

  • Shin, Hyung Jin;Ahn, Juun Gi;Kang, Seok Man;Song, Sung Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.383-383
    • /
    • 2017
  • 간척지는 바다와 접하는 하구언, 개벌로 이루어진 해안 등을 농공상업용지로 개간한 토지로서 간척지 이용에 있어 가장 우선적으로 용수공급 방안 수립이 고려되어야 한다. 해안유출지하수(submarine groundwater discharge)는 지하수 담수체가 존재하는 마지막 장소로 염해가 없는 청정수질 용수이다. 해안유출지하수 발생 구간을 탐지하기 위해 실측자료의 시공간적 한계를 극복할 수 있는 인공위성 영상을 활용한 원격탐사 기법을 이용하여 광역규모의 다양한 자료를 이용하고자 한다. MODIS (Moderate-Resolution Imaging Spectroradiometer)는 지구 생물권 활동에 관한 자료를 제공하는 미항공우주국 Terra EOS (Earth Observation system)위성의 주센서로 해양, 육상과 대기 분야에 적용이 가능한 다목적 센서이다. MODIS는 36개의 밴드를 이용하여 대기, 지표, 해양 관련 다양한 정보들을 제공하고 있다. 본 연구에서는 간척지의 효율적인 용수공급을 위한 해안유출지하수의 최적 개발 및 이용을 위해 MODIS MOD11 product 지표면온도(Land Surface Temperature; LST), MODIS MOD13 product 식생지수(Normalized Difference Vegetation Index; NDVI), 기상청의 지중온도와 실측자료를 이용하여 새만금 간척지를 대상으로 해안유출지하수 발생 구간을 탐지하고자 한다.

  • PDF

A study for spatial soil moisture downscaling method using MODIS satellite image (위성영상으로부터 산정된 토양수분자료의 상세화(Downscaling)기법 적용 및 고찰)

  • Joh, Hyung Kyung;Jang, Sun Sook;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.31-31
    • /
    • 2015
  • 토양수분은 일반적으로 시료를 채취하거나 현장에 설치된 다양한 센서를 통해 추정하지만 이는 시간과 비용이 많이 소모되기 ?문에 유역내의 공간적인 토양수분 분포를 추정하는데 상당한 어려움이 따른다. 토양수분뿐만 아니라 공간적인 대기현상, 토양수분, 식생현황 등을 관측하는데 대중적으로 사용되는 것이 위성 관측이며, 기본적으로는 위성에 탑재된 센서가 각 주파수대역에 따라 영상을 생성하면 이를 특정 알고리듬을 적용하여 원하는 값을 도출하게 된다. 토양수분 산정에 사용되는 대표적인 위성영상으로는 SMOS (Soil Moisture and Ocean Salinity), ARMS-E(Advanced Microwave Scanning Radiometer - Earth Observing System), ARMS2 (ARMS ver.2) 영상 등이 있으며, 이러한 위성은 해상도가 약 10 km ~ 40 km로 상당이 낮기 때문에 우리나라와 같이 면적이 좁고 지형이 복잡하며 다양한 토지피복이 밀집되어있는 곳에서는 기존 수문 연구에 응용할 수 있는 토양수분 공간지도 산정을 위해 상세화(Downscaling)과정이 필요하다고 판단된다. 따라서 본 연구에서는 ARMS2 토양수분 영상을 MODIS 영상의 식생지수(NDVI, Normalized Difference Vegetation Index), 알베도 및 온도를 활용하여 공간적으로 상세화된 토양 수분 지도를 작성하였고, 유역 내에서 실제 측정되고 있는 토양수분 관측값을 활용하여 상세화기법의 적용성을 검토하였다.

  • PDF

A Study of the Development of Wetland Database for the Nakdong River Estuary using GIS and RS (GIS와 원격탐사를 이용한 낙동강 하구 습지 데이터베이스 구축에 관한 연구)

  • Yi, Gi-Chul;Yoon, Hae-Soon;Kim, Seung-Hwan;Nam, Chun-Hee;Ok, Jin-A
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.3
    • /
    • pp.1-15
    • /
    • 1999
  • This study was carried out to find out the way to build a comprehensive wetland ecosystem database using the technique of remote sensing and geographic information system. A Landsat TM image taken in May 17, 1997 was used for the primary source for the image analysis. Field surveys were conducted March to September of 1998 to help image analysis and examine the results. An actual wetland vegetation map was created based on the field survey. A Landsat TM image was analyzed by unsupervised and supervised classification methods and finally categorized into such 5 classes as Phragmites australis community, mixed community, sand beach, Scirpus trigueter community and non-vegetation intertidal area. Wetland basemap was developed for the overall accuracy assesment in wetland mapping. Vegetation index map of wetland vegetation was developed using NDVI(normalized difference vegetation index). The map of wetland productivity was developed based on the productivity of Phragmites australis and the relationship to the proximity of adjacent water bodies. The map of potential vegetation succession map was also developed based on the experience and knowledge of the field biologists. Considering these results, it is possible to use the remote sensing and GIS techniques for producing wetland ecosystem database. This study indicated that these techniques are very effective for the development of the national wetland inventory in Korea.

  • PDF

Proposal of Prediction Technique for Future Vegetation Information by Climate Change using Satellite Image (위성영상을 이용한 기후변화에 따른 미래 식생정보 예측 기법 제안)

  • Ha, Rim;Shin, Hyung-Jin;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.58-69
    • /
    • 2007
  • The vegetation area that occupies 76% in land surface of the earth can give a considerable impact on water resources, environment and ecological system by future climate change. The purpose of this study is to predict future vegetation cover information from NDVI (Normalized Difference Vegetation Index) extracted from satellite images. Current vegetation information was prepared from monthly NDVI (March to November) extracted from NOAA AVHRR (1994 - 2004) and Terra MODIS (2000 - 2004) satellite images. The NDVI values of MODIS for 5 years were 20% higher than those of NOAA. The interrelation between NDVIs and monthly averaged climate factors (daily mean, maximum and minimum temperature, rainfall, sunshine hour, wind velocity, and relative humidity) for 5 river basins of South Korea showed that the monthly NDVIs had high relationship with monthly averaged temperature. By linear regression, the future NDVIs were estimated using the future mean temperature of CCCma CGCM2 A2 and B2 climate change scenario. The future vegetation information by NOAA NDVI showed little difference in peak value of NDVI, but the peak time was shifted from July to August and maintained high NDVIs to October while the present NDVI decrease from September. The future MODIS NDVIs showed about 5% increase comparing with the present NDVIs from July to August.

  • PDF

Analysis of Waterbody Changes in Small and Medium-Sized Reservoirs Using Optical Satellite Imagery Based on Google Earth Engine (Google Earth Engine 기반 광학 위성영상을 이용한 중소규모 저수지 수체 변화 분석)

  • Younghyun Cho;Joonwoo Noh
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.363-375
    • /
    • 2024
  • Waterbody change detection using satellite images has recently been carried out in various regions in South Korea, utilizing multiple types of sensors. This study utilizes optical satellite images from Landsat and Sentinel-2 based on Google Earth Engine (GEE) to analyze long-term surface water area changes in four monitored small and medium-sized water supply dams and agricultural reservoirs in South Korea. The analysis covers 19 years for the water supply dams and 27 years for the agricultural reservoirs. By employing image analysis methods such as normalized difference water index, Canny Edge Detection, and Otsu'sthresholding for waterbody detection, the study reliably extracted water surface areas, allowing for clear annual changes in waterbodies to be observed. When comparing the time series data of surface water areas derived from satellite images to actual measured water levels, a high correlation coefficient above 0.8 was found for the water supply dams. However, the agricultural reservoirs showed a lower correlation, between 0.5 and 0.7, attributed to the characteristics of agricultural reservoir management and the inadequacy of comparative data rather than the satellite image analysis itself. The analysis also revealed several inconsistencies in the results for smaller reservoirs, indicating the need for further studies on these reservoirs. The changes in surface water area, calculated using GEE, provide valuable spatial information on waterbody changes across the entire watershed, which cannot be identified solely by measuring water levels. This highlights the usefulness of efficiently processing extensive long-term satellite imagery data. Based on these findings, it is expected that future research could apply this method to a larger number of dam reservoirs with varying sizes,shapes, and monitoring statuses, potentially yielding additional insights into different reservoir groups.

A Study on the Observation of Soil Moisture Conditions and its Applied Possibility in Agriculture Using Land Surface Temperature and NDVI from Landsat-8 OLI/TIRS Satellite Image (Landsat-8 OLI/TIRS 위성영상의 지표온도와 식생지수를 이용한 토양의 수분 상태 관측 및 농업분야에의 응용 가능성 연구)

  • Chae, Sung-Ho;Park, Sung-Hwan;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.931-946
    • /
    • 2017
  • The purpose of this study is to observe and analyze soil moisture conditions with high resolution and to evaluate its application feasibility to agriculture. For this purpose, we used three Landsat-8 OLI (Operational Land Imager)/TIRS (Thermal Infrared Sensor) optical and thermal infrared satellite images taken from May to June 2015, 2016, and 2017, including the rural areas of Jeollabuk-do, where 46% of agricultural areas are located. The soil moisture conditions at each date in the study area can be effectively obtained through the SPI (Standardized Precipitation Index)3 drought index, and each image has near normal, moderately wet, and moderately dry soil moisture conditions. The temperature vegetation dryness index (TVDI) was calculated to observe the soil moisture status from the Landsat-8 OLI/TIRS images with different soil moisture conditions and to compare and analyze the soil moisture conditions obtained from the SPI3 drought index. TVDI is estimated from the relationship between LST (Land Surface Temperature) and NDVI (Normalized Difference Vegetation Index) calculated from Landsat-8 OLI/TIRS satellite images. The maximum/minimum values of LST according to NDVI are extracted from the distribution of pixels in the feature space of LST-NDVI, and the Dry/Wet edges of LST according to NDVI can be determined by linear regression analysis. The TVDI value is obtained by calculating the ratio of the LST value between the two edges. We classified the relative soil moisture conditions from the TVDI values into five stages: very wet, wet, normal, dry, and very dry and compared to the soil moisture conditions obtained from SPI3. Due to the rice-planing season from May to June, 62% of the whole images were classified as wet and very wet due to paddy field areas which are the largest proportions in the image. Also, the pixels classified as normal were analyzed because of the influence of the field area in the image. The TVDI classification results for the whole image roughly corresponded to the SPI3 soil moisture condition, but they did not correspond to the subdivision results which are very dry, wet, and very wet. In addition, after extracting and classifying agricultural areas of paddy field and field, the paddy field area did not correspond to the SPI3 drought index in the very dry, normal and very wet classification results, and the field area did not correspond to the SPI3 drought index in the normal classification. This is considered to be a problem in Dry/Wet edge estimation due to outlier such as extremely dry bare soil and very wet paddy field area, water, cloud and mountain topography effects (shadow). However, in the agricultural area, especially the field area, in May to June, it was possible to effectively observe the soil moisture conditions as a subdivision. It is expected that the application of this method will be possible by observing the temporal and spatial changes of the soil moisture status in the agricultural area using the optical satellite with high spatial resolution and forecasting the agricultural production.

Water resources monitoring technique using multi-source satellite image data fusion (다종 위성영상 자료 융합 기반 수자원 모니터링 기술 개발)

  • Lee, Seulchan;Kim, Wanyub;Cho, Seongkeun;Jeon, Hyunho;Choi, Minhae
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.497-508
    • /
    • 2023
  • Agricultural reservoirs are crucial structures for water resources monitoring especially in Korea where the resources are seasonally unevenly distributed. Optical and Synthetic Aperture Radar (SAR) satellites, being utilized as tools for monitoring the reservoirs, have unique limitations in that optical sensors are sensitive to weather conditions and SAR sensors are sensitive to noises and multiple scattering over dense vegetations. In this study, we tried to improve water body detection accuracy through optical-SAR data fusion, and quantitatively analyze the complementary effects. We first detected water bodies at Edong, Cheontae reservoir using the Compact Advanced Satellite 500(CAS500), Kompsat-3/3A, and Sentinel-2 derived Normalized Difference Water Index (NDWI), and SAR backscattering coefficient from Sentinel-1 by K-means clustering technique. After that, the improvements in accuracies were analyzed by applying K-means clustering to the 2-D grid space consists of NDWI and SAR. Kompsat-3/3A was found to have the best accuracy (0.98 at both reservoirs), followed by Sentinel-2(0.83 at Edong, 0.97 at Cheontae), Sentinel-1(both 0.93), and CAS500(0.69, 0.78). By applying K-means clustering to the 2-D space at Cheontae reservoir, accuracy of CAS500 was improved around 22%(resulting accuracy: 0.95) with improve in precision (85%) and degradation in recall (14%). Precision of Kompsat-3A (Sentinel-2) was improved 3%(5%), and recall was degraded 4%(7%). More precise water resources monitoring is expected to be possible with developments of high-resolution SAR satellites including CAS500-5, developments of image fusion and water body detection techniques.

Response of Soybean (Glycine max L.) to Subsurface Drip Irrigation with Different Dripline Placements at a Sandy-loam Soil

  • Lee, Sanghun;Jung, Ki-Yuol;Chun, Hyen-Chung;Choi, Young-Dae;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.2
    • /
    • pp.79-89
    • /
    • 2018
  • Subsurface drip irrigation (SDI) system is considered one of the most effective methods for water application. A 2-year field study was conducted to investigate the effect of SDI systems with various dripline spacing (0.7 or 1.4 m) and position (under furrow or ridge) on soybean (Glycine max L.) production at a sandy-loam soil in Miryang, South Korea. For 2016-2017, average grain yield in SDI irrigated plots, $3.16Mg\;ha^{-1}$, was statistically greater than rainfed irrigated plot ($2.63Mg\;ha^{-1}$). Soybean grain yield averaged $3.25Mg\;ha^{-1}$ for the 0.7 m dripline spacing and $3.07Mg\;ha^{-1}$ for the 1.4 m spacing for the two-year period compared to a rainfed irrigated average of $2.63Mg\;ha^{-1}$ for the same period. Soybean treated with SDI system had significantly greater values of normalized difference vegetation index and stomatal conductance, indicating that soybean plants in SDI plots had greater photosynthetic and stomatal activity due to the higher water availability in soil. Irrigation water use efficiency (IWUE) was greatest in the plot of 0.7 m spacing installed under ridge position than any other plot across growing season. Average soil water content in plots with 0.7 m dripline spacing was $0.21m^3\;m^{-3}$ at 5 cm depth layer, which was 45% greater compared to the plots with 1.4 m spacing, even though the gross irrigation amounts were greater in 1.4 m spacing plots. It is concluded that wide dripline spacing (1.4 m) is probably the more economical installation design for SDI system compared to 0.7 m spacing in this study soil because the initial cost for dripline may be reduced with wide spacing design, even though the IWUE is greater in the plot of 0.7 m dripline spacing.