• Title/Summary/Keyword: Normalized Cross Correlation

Search Result 98, Processing Time 0.034 seconds

A Fast Normalized Cross Correlation-Based Block Matching Algorithm Using Multilevel Cauchy-Schwartz Inequality

  • Song, Byung-Cheol
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.401-406
    • /
    • 2011
  • This paper presents a fast block-matching algorithm based on the normalized cross-correlation, where the elimination order is determined based on the gradient magnitudes of subblocks in the current macroblock. Multilevel Cauchy-Schwartz inequality is derived to skip unnecessary block-matching calculations in the proposed algorithm. Also, additional complexity reduction is achieved re-using the normalized cross correlation values for the spatially neighboring macroblock because the search areas of adjacent macroblocks are overlapped. Simulation results show that the proposed algorithm can improve the speed-up ratio up to about 3 times in comparison with the existing algorithm.

Development of Fast and Exact FFT Algorithm for Cross-Correlation PIV (상호상관 PIV기법을 위한 빠르고 정확한 FFT 알고리듬의 개발)

  • Yu, Kwon-Kyu;Kim, Dong-Su;Yoon, Byung-Man
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.851-859
    • /
    • 2005
  • Normalized cross-correlation (correlation coefficient) is a useful measure for pattern matching in PIV (Particle Image Velocimetry) analysis. Because it does not have a corresponding simple expression in frequency domain, several fast but inexact measures have been used. Among them, three measures of correlation for PIV analysis and the normalized cross-correlation were evaluated with a sample calculation. The test revealed that all other proposed correlation measures sometimes show inaccurate results, except the normalized cross-correlation. However, correlation coefficient method has a weakpoint that it requires so long time for calculation. To overcome this shortcoming, a fast and exact method for calculating normalized cross-correlation is suggested. It adopts Fast Fourier Transform (FFT) for calculation of covariance and the successive-summing method for the denominator of correlation coefficient. The new algorithm showed that it is really fast and exact in calculating correlation coefficient.

Fast Quadtree Based Normalized Cross Correlation Method for Fractal Video Compression using FFT

  • Chaudhari, R.E.;Dhok, S.B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.519-528
    • /
    • 2016
  • In order to achieve fast computational speed with good visual quality of output video, we propose a frequency domain based new fractal video compression scheme. Normalized cross correlation is used to find the structural self similar domain block for the input range block. To increase the searching speed, cross correlation is implemented in the frequency domain using FFT with one computational operation for all the domain blocks instead of individual block wise calculations. The encoding time is further minimized by applying rotation and reflection DFT properties to the IFFT of zero padded range blocks. The energy of overlap small size domain blocks is pre-computed for the entire reference frame and retaining the energies of the overlapped search window portion of previous adjacent block. Quadtree decompositions are obtained by using domain block motion compensated prediction error as a threshold to control the further partitions of the block. It provides a better level of adaption to the scene contents than fixed block size approach. The result shows that, on average, the proposed method can raise the encoding speed by 48.8 % and 90 % higher than NHEXS and CPM/NCIM algorithms respectively. The compression ratio and PSNR of the proposed method is increased by 15.41 and 0.89 dB higher than that of NHEXS on average. For low bit rate videos, the proposed algorithm achieve the high compression ratio above 120 with more than 31 dB PSNR.

A Robust Watermarking Technique Using Affine Transform and Cross-Reference Points (어파인 변형과 교차참조점을 이용한 강인한 워터마킹 기법)

  • Lee, Hang-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.615-622
    • /
    • 2007
  • In general, Harris detector is commonly used for finding salient points in watermarking systems using feature points. Harris detector is a kind of combined comer and edge detector which is based on neighboring image data distribution, therefore it has some limitation to find accurate salient points after watermark embedding or any kinds of digital attacks. In this paper, we have used cross reference points which use not data distribution but geometrical structure of a normalized image in order to avoid pointing error caused by the distortion of image data. After normalization, we find cross reference points and take inverse normalization of these points. Next, we construct a group of triangles using tessellation with inversely normalized cross reference points. The watermarks are affine transformed and transformed-watermarks are embedded into not normalized image but original one. Only locations of watermarks are determined on the normalized image. Therefore, we can reduce data loss of watermark which is caused by inverse normalization. As a result, we can detect watermarks with high correlation after several digital attacks.

Development of Algorithm for Stereoscopic PIV using Normalized Cross-correlation (정규상호상관도를 이용한 입체 입자영상유속계 알고리즘 개발)

  • Oh, Jung-Keun;Kim, Yoo-Chul;Ryu, Min-Cheol;Koh, Won-Kyou;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.579-589
    • /
    • 2007
  • Contrary to the conventional single-point measuring devices such as LDV, pitot-tube, hot-wire, etc., it would be possible to measure instantaneously 3-D flow fields with a stereoscopic PIV system. In this paper, we present an analysis algorithm for a stereoscopic PIV system using the normalized cross-correlation (NCC) and a 3-D calibration based reconstruction method. The evaluation method based on NCC is one of the most accurate correlation-based methods. We validated the developed algorithm through a benchmarking comparison with 3-D artificial SPIV images and calibration target images.

Normalized Cross Correlation-based Multiview background Subtraction for 3D Object Reconstruction (3차원 객체 복원을 위한 정규 상관도 기반 다중 시점 배경 차분 기법)

  • Paeng, Kyunghyun;Hwang, Sung Soo;Kim, Hee-Dong;Kim, Sujung;Yoo, Jisung;Kim, Seong Dae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.228-237
    • /
    • 2013
  • In this paper, we propose a normalized cross correlation(NCC)-based multiview background subtraction method which is robust when an object and background have similar color. When the background of the capturing environment is not artificially composed, the regions in the background images which would be occluded by an object tends to have difference colors. The colors of those regions, however, becomes similar when an object enters the capturing environment. Based on this assumption, this paper proposes a concept of GoNCC(Graph of Normalized Cross Correlation). GoNCC is the distribution of NCC between a pixel in an image and pixels related by epipolar constraints with the pixel. The proposed multiview background subtraction method is performed by comparing GoNCC of the current images with the background images. To reduce computational complexity, we perform multiview background subtraction only to the pixels undetermined by single view background subtraction. Experimental results show that the proposed method is more robust to color similarity between an object and background than a single-view background subtraction method and a previous multiview background subtraction method.

Performance Comparison of Matching Cost Functions for High-Quality Sea-Ice Surface Model Generation (고품질 해빙표면모델 생성을 위한 정합비용함수의 성능 비교 분석)

  • Kim, Jae-In;Kim, Hyun-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1251-1260
    • /
    • 2018
  • High-quality sea-ice surface models generated from aerial images can be used effectively as field data for developing satellite-based remote sensing methods but also as analysis data for understanding geometric variations of Arctic sea-ice. However, the lack of texture information on sea-ice surfaces can reduce the accuracy of image matching. In this paper, we analyze the performance of matching cost functions for homogeneous sea-ice surfaces as a part of high-quality sea-ice surface model generation. The matching cost functions include sum of squared differences (SSD), normalized cross-correlation (NCC), and zero-mean normalized cross-correlation (ZNCC) in image domain and phase correlation (PC), orientation correlation (OC), and gradient correlation (GC) in frequency domain. In order to analyze the matching performance for texture changes clearly and objectively, a new evaluation methodology based on the principle of object-space matching technique was introduced. Experimental results showed that it is possible to secure reliability and accuracy of image matching only when optimal search windows are variably applied to each matching point in textureless regions such as sea-ice surfaces. Among the matching cost functions, NCC and ZNCC showed the best performance for texture changes.

Image Stitching Using Normalized Cross-Correlation and the Thresholding Method in a Fluorescence Microscopy Image of Brain Tumor Cells (정규 상호상관도 및 이진화 기법을 이용한 뇌종양 세포의 형광 현미경 영상 스티칭)

  • Seo, Ji Hyun;Kang, Mi-Sun;Kim, Hyun-jung;Kim, Myoung-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.7
    • /
    • pp.979-985
    • /
    • 2017
  • This paper, which covers a fluorescence microscopy image of brain tumor cells, looks at drug reactions by treating different types and concentrations of drugs on a plate of $24{\times}16$ wells. Due to the limitation of the field of view, a well was taken into 9 field images, and each has an overlapping area with its neighboring fields. To analyze more precisely, image stitching is needed. The basic method is finding a similar area using normalized cross-correlation (NCC). The problem is that some overlapping areas may not have any duplicated cells that help to find the matching point. In addition, the cell objects have similar sizes and shapes, which makes distinguishing them difficult. To avoid calculating similarity between blank areas and roughly distinguishing different cells, thresholding is added. The thresholding method classifies background and cell objects based on fixed thresholds and finds the location of the first seen cell. After getting its location, NCC is used to find the best correlation point. The results are compared with a simple boundary stitched image. Our proposed method stitches images that are connected in a grid form without collision, selecting the best correlation point among areas that contain overlapping cells and ones without it.

Shape Image Recognition by Using Histogram-based Correlation (히스토그램 기반 상관성을 이용한 모양영상 인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.548-553
    • /
    • 2010
  • This paper presents an effective shape image recognition method using the correlation based on 4-dimensional histogram. The histogram-based correlation is accurately applied to express the similarity by comparing the positions of a corresponding dimension between the images, which is calculated by considering 4 directions of the shape image. The correlation measure by using the normalized cross-correlation is also applied to obtain the robust recognition to the geometrical variations such as shape, position, size, and rotation. The proposed method has been applied to the problem for recognizing the 8 shape images of 64*64 pixels and the 30 shape images of 256*256 pixels. The experimental results show that the proposed method has a superior recognition performance that appears the image characters well.

Boundary Matching of Color and Depth Images Using Normalized Cross Correlation (정규화된 상호 연관성을 이용한 컬러 영상과 깊이 영상의 외곽선 매칭)

  • Yun, TaeHui;Sim, Jae-Young
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.45-46
    • /
    • 2013
  • 본 논문에서는 깊이 영상과 컬러 영상의 매칭을 통한 강인한 전경 객체 영역화 기법을 제안한다. 기존의 컬러 영상 기반 객체 영역화 알고리즘은 배경과 객체의 색상이 유사한 경우 정확한 객체 영역화가 어렵다. 깊이 영상을 이용하면 이러한 오 검출을 줄일 수 있지만, 깊이 영상 취득 장비의 오류로 인하여 검출되는 객체 외곽선이 컬러 영상에 비해 세밀하지 못한 단점이 있다. 따라서, 깊이 영상의 외곽선을 비교적 세밀한 컬러 영상의 외곽선에 매칭시킨다. 아울러, 서로 다른 센서에서 취득한 두 영상을 매칭하기 위하여, 정규화된 상호연관성(normalized cross correlation)을 유사도 척도로 사용한다. 실험을 통하여 제안하는 알고리즘이 전경 객체 영역화의 오 검출을 줄이며, 동시에 객체 외곽선을 충실히 복원함을 확인한다.

  • PDF