• Title/Summary/Keyword: Normal linear regression model

Search Result 85, Processing Time 0.028 seconds

A Bootstrap Test for Linear Relationship by Kernel Smoothing (희귀모형의 선형성에 대한 커널붓스트랩검정)

  • Baek, Jang-Sun;Kim, Min-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.95-103
    • /
    • 1998
  • Azzalini and Bowman proposed the pseudo-likelihood ratio test for checking the linear relationship using kernel regression estimator when the error of the regression model follows the normal distribution. We modify their method with the bootstrap technique to construct a new test, and examine the power of our test through simulation. Our method can be applied to the case where the distribution of the error is not normal.

  • PDF

A study on log-density ratio in logistic regression model for binary data

  • Kahng, Myung-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.1
    • /
    • pp.107-113
    • /
    • 2011
  • We present methods for studying the log-density ratio, which allow us to select which predictors are needed, and how they should be included in the logistic regression model. Under multivariate normal distributional assumptions, we investigate the form of the log-density ratio as a function of many predictors. The linear, quadratic and crossproduct terms are required in general. If two covariance matrices are equal, then the crossproduct and quadratic terms are not needed. If the variables are uncorrelated, we do not need the crossproduct terms, but we still need the linear and quadratic terms.

Dirichlet Process Mixtures of Linear Mixed Regressions

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.625-637
    • /
    • 2015
  • We develop a Bayesian clustering procedure based on a Dirichlet process prior with cluster specific random effects. Gibbs sampling of a normal mixture of linear mixed regressions with a Dirichlet process was implemented to calculate posterior probabilities when the number of clusters was unknown. Our approach (unlike its counterparts) provides simultaneous partitioning and parameter estimation with the computation of the classification probabilities. A Monte Carlo study of curve estimation results showed that the model was useful for function estimation. We find that the proposed Dirichlet process mixture model with cluster specific random effects detects clusters sensitively by combining vague edges into different clusters. Examples are given to show how these models perform on real data.

Partially linear multivariate regression in the presence of measurement error

  • Yalaz, Secil;Tez, Mujgan
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.5
    • /
    • pp.511-521
    • /
    • 2020
  • In this paper, a partially linear multivariate model with error in the explanatory variable of the nonparametric part, and an m dimensional response variable is considered. Using the uniform consistency results found for the estimator of the nonparametric part, we derive an estimator of the parametric part. The dependence of the convergence rates on the errors distributions is examined and demonstrated that proposed estimator is asymptotically normal. In main results, both ordinary and super smooth error distributions are considered. Moreover, the derived estimators are applied to the economic behaviors of consumers. Our method handles contaminated data is founded more effectively than the semiparametric method ignores measurement errors.

Generalized Linear Models for the Analysis of Data from the Quality-Improvement Experiments (일반화 선형모형을 통한 품질개선실험 자료분석)

  • Lee, Youngjo;Lim, Yong Bin
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.2
    • /
    • pp.128-141
    • /
    • 1996
  • The advent of the quality-improvement movement caused a great expansion in the use of statistically designed experiments in industry. The regression method is often used for the analysis of data from such experiments. However, the data for a quality characterstic often takes the form of counts or the ratio of counts, e.g. fraction of defectives. For such data the analysis using generalized linear models is preferred to that using the simple regression model. In this paper we introduce the generalized linear model and show how it can be used for the analysis of non-normal data from quality-improvement experiments.

  • PDF

Development of Prediction Model for Moisture and Protein Content of Single Kernel Rice using Spectroscopy (분광분석법을 이용한 단립 쌀의 함수율 및 단백질 함량 예측모델 개발)

  • 김재민;최창현;민봉기;김종훈
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • The objectives of this study were to develop models to predict the contents of moisture and protein of single kernel of brown rice based on visible/NIR (near-infrared) spectroscopic technique. The reflectance spectra of rice were obtained in the range of the wavelength 400 to 2,500 nm with 2 nm intervals. Multiple linear regression(MLR) and partial least squares (PLS) were used to develop the models. The MLR model using the first derivative spectra(10 nm of gap) with Standard Normal Variate and Detrending (SNV and Drt.) preprocessing showed the best results to predict moisture content of the sin린e kernel brown rice. To predict the protein content of a single kernel of brown ricer the PLS model used the raw spectra with multiplicative scatter correction(MSC) preprocessing over the wavelength of 1,100~1,500 nm.

  • PDF

A Graphical Method of Checking the Adequacy of Linear Systematic Component in Generalized Linear Models (일반화선형모형에서 선형성의 타당성을 진단하는 그래프)

  • Kim, Ji-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.1
    • /
    • pp.27-41
    • /
    • 2008
  • A graphical method of checking the adequacy of a generalized linear model is proposed. The graph helps to assess the assumption that the link function of mean can be expressed as a linear combination of explanatory variables in the generalized linear model. For the graph the boosting technique is applied to estimate nonparametrically the relationship between the link function of the mean and the explanatory variables, though any other nonparametric regression methods can be applied. Through simulation studies with normal and binary data, the effectiveness of the graph is demonstrated. And we list some limitations and technical details of the graph.

Fault Diagnosis and Recovery of a Thermal Error Compensation System in a CNC Machine Tool (CNC 공작기계에서 열변형 오차 보정 시스템의 고장진단 및 복구)

  • 황석현;이진현;양승한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.135-141
    • /
    • 2000
  • The major role of temperature sensors in thermal error compensation system of machine tools is improving machining accuracy by supplying reliable temperature data on the machine structure. This paper presents a new method for fault diagnosis of temperature sensors and recovery of faulted data to establish the reliability of thermal error compensation system. The detection of fault and its location is based on the correlation coefficients among temperature data from the sensors. The multiple linear regression model which is prepared using complete normal data is also used fur the recovery of faulted data. The effectiveness of this method was tested by comparing the computer simulation results and measured data in a CNC machining center.

  • PDF

Flood Risk Assessment with Climate Change (기후 변화를 고려한 홍수 위험도 평가)

  • Jeong, Dae-Il;Stedinger, Jery R.;Sung, Jang-Hyun;Kim, Young-Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.55-64
    • /
    • 2008
  • The evidence of changes in the climate system is obvious in the world. Nevertheless, at the current techniques for flood frequency analysis, the flood distribution can not reflect climate change or long-term climate cycles. Using a linear regression and a Mann-Kendall test, trends in annual maximum precipitation and flood data for several major gauging sites were evaluated. Moreover, this research considered incorporating flood trends by climate change effects in flood frequency analyses. For five rainfall gauging sites (Seoul, Incheon, Ulleungdo, Jeonju, and Gangneung), upward trends were observed in all gauged annual maximum precipitation records but they were not statistically significant. For three streamflow gauging sites (Andong Dam, Soyanggang Dam, and Daecheong Dam), upward trends were also observed in all gauged annual maximum flood records, but only the flood at Andong Dam was statistically significant. A log-normal trend model was introduced to reflect the observed linear trends in annual maximum flood series and applied to estimate flood frequency and risk for Andong Dam and Soyanggang Dam. As results, when the target year was 2005, 50-year floods of the log-normal trend model were 41% and 21% larger then those of a log-normal model for Andong Dam and Soyanggang Dam, respectively. Moreover, the estimated floods of the log-normal trend model increases as the target year increases.

Relationship between vertical components of maxillary molar and craniofacial frame in normal occlusion: Cephalometric calibration on the vertical axis of coordinates

  • Han, Ah-Reum;Kim, Jongtae;Yang, Il-Hyung
    • The korean journal of orthodontics
    • /
    • v.51 no.1
    • /
    • pp.15-22
    • /
    • 2021
  • Objective: The aim of this study was to evaluate the correlation between the vertical position of maxillary first molar and vertical skeletal measurements in lateral cephalograms by using new linear measurements on the vertical axis of coordinates with calibration. Methods: The vertical position of maxillary first molar (U6-SN), and the conventionally used variables (ConV) and the newly derived linear variables (NwLin) for vertical skeletal patterns were measured in the lateral cephalograms of 103 Korean adults with normal occlusions. Pearson correlation analyses and multiple linear regression analyses were performed with and without calibration using the anterior and posterior cranial base (ACB and PCB, respectively) lengths to identify variables related to U6-SN. Results: The PCB-calibrated statistics showed the best power of explanation. ConV indicating skeletal hyperdivergency was significantly correlated with U6-SN. Six NwLin regarding the position of palatal plane were positively correlated with U6-SN. Each multiple linear regression analysis generated a two-variable model: sella and nasion to palatal plane. Among the three models, the PCB-calibrated model yielded highest adjusted R2 value, 0.880. Conclusions: U6-SN could be determined by the vertical position of the maxilla, which could then be used to plan the amount of molar intrusion and estimate its clinical stability. Cephalometric calibration on the vertical axis of coordinates by using PCB for vertical linear measurements could strengthen the analysis itself.