• Title/Summary/Keyword: Normal Loading

Search Result 602, Processing Time 0.034 seconds

Evaluation on Mechanical Properties of Ultra High Strength Concrete with Heating and Loading (고온가열 및 하중재하에 따른 초고강도 콘크리트의 역학적 특성 평가)

  • Kim, Min-Jung;Choe, Gyeong-Cheol;Yoon, Min-Ho;Ham, Eun-Young;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.34-35
    • /
    • 2013
  • In this study, the ultra high strength concrete which have 80, 130, 180MPa took the heat from 20℃ to 700℃ and the 0, 20% stress in normal condition's to evaluate stress-strain, residual compressive strength and thermal expansion deformation were evaluated. The heating speed of specimen was 0.77℃/min 20~50℃, 50℃ before the target temperature, and the other interval's heating speed was 1℃/min. As a result, the stress-strain curve of non-load specimen showed the liner behavior at high temperature when the specimen's strength increased more. If ultra high strength concrete got loads, its compressive strength tended to decrease different from the normal strength concrete. The thermal expansion deformation was expanded from a vitrification of quartz over 500℃. however, over the 600℃, it was shrinked because of the dehydration of the combined water.

  • PDF

A Experimental Study for the Mechanical Behavior of Rock Joints under Cyclic Shear Loading (주기전단 하중하의 암석 절리의 역학적 거동에 관한 실험적 연구)

  • 이희석;박연준;유광호;이희근
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.350-363
    • /
    • 1999
  • The precision cyclic shear test system was established to investigate the mechanical characteristics of rough rock joints under cyclic loading conditions. Laboratory cyclic shear tests were conducted for saw-cut joints and artificial rough rock joints using Hwangdeung granite and Yeosan marble. Surface roughness and aperture characteristics of specimens were examined by measuring surface topography using the laser profilometer. Peak shear strength, phase difference during loading and unloading, and anisotropic shear behavior were investigated throughout the cyclic shear test results. These features and their subsequent variations in each loading cycle are significantly dependent upon the second order asperities and the strength of intact rock. It was observed that degradation of asperities for rough rock joints under cyclic shear loading followed the exponential degradation laws of asperity angle and that the mechanism for asperity degradation would be different depending upon the normal stress level, roughness of joint surface and the loading stage.

  • PDF

In-vitro development of a temporal abutment screw to protect osseointegration in immediate loaded implants

  • Garcia-Roncero, Herminio;Caballe-Serrano, Jordi;Cano-Batalla, Jordi;Cabratosa-Termes, Josep;Figueras-Alvarez, Oscar
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.160-165
    • /
    • 2015
  • PURPOSE. In this study, a temporal abutment fixation screw, designed to fracture in a controlled way upon application of an occlusal force sufficient to produce critical micromotion was developed. The purpose of the screw was to protect the osseointegration of immediate loaded single implants. MATERIALS AND METHODS. Seven different screw prototypes were examined by fixing titanium abutments to 112 Mozo-Grau external hexagon implants (MG Osseous$^{(R)}$; Mozo-Grau, S.A., Valladolid, Spain). Fracture strength was tested at $30^{\circ}$ in two subgroups per screw: one under dynamic loading and the other without prior dynamic loading. Dynamic loading was performed in a single-axis chewing simulator using 150,000 load cycles at 50 N. After normal distribution of obtained data was verified by Kolmogorov-Smirnov test, fracture resistance between samples submitted and not submitted to dynamic loading was compared by the use of Student's t-test. Comparison of fracture resistance among different screw designs was performed by the use of one-way analysis of variance. Confidence interval was set at 95%. RESULTS. Fractures occurred in all screws, allowing easy retrieval. Screw Prototypes 2, 5 and 6 failed during dynamic loading and exhibited statistically significant differences from the other prototypes. CONCLUSION. Prototypes 2, 5 and 6 may offer a useful protective mechanism during occlusal overload in immediate loaded implants.

Viscoelastic Properties of Fruit Flesh(I) - Stress Relaxation Behavior - (과실(果實)의 점탄성(粘彈性) 특성(特性)(I) - 응력이완거동(應力弛緩擧動) -)

  • Kim, M.S.;Park, J.M.;Choi, D.S.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.3
    • /
    • pp.260-271
    • /
    • 1992
  • Fruits are generally subjected to mechanical forces during harvesting, handling, and transportation that may cause damage in the form of bruises, punctures, and cracks. In order to prevent damage, and insure better quality fruits for consumers, it is very essential to study physical properties of these materials. The studies were conducted to examine the effect of storage period, storage condition, and other factors, such as loading rate and initial strain, on the stress relaxation behavior of the fruit flesh, and develop nonlinear viscoelastic models to represent its stress relaxation behavior. The following results were obtained from the study : 1. Since the viscoelastic behavior of the fruits flesh was nonlinear, the behavior was satisfactorily modelled as follows ; $${\delta}({\varepsilon},\;t)={\varepsilon}^A[B\;{\exp}(-Ct)+D\;{\exp}(-Ft)+G(-Ht)]$$ But, for the every strain applied, the stress relaxation behavior of the fruit flesh, such as apple and pear, could be well described by the Generalized Maxwell model, respectively. 2. The effect of loading rate on the stress relaxation behavior was remarkable. The higher loading rate resulted in the higher initial stress, and the faster stress relaxation. 3. The higher initial strain resulted in the higher initial stress, and stress relaxed at the large initial strain was also much higher than at the small initial strain. 4. Stress relaxation rate and quantity stored in the fruits at the low temperature storage were much higher than those at the normal temperature storage in the same storage period. Also, in all fruits tested, the longer storage period was the more relaxation rate and quantity were shown. These trends in the normal temperature condition was the more significant than in the low temperature condition.

  • PDF

Statistical Distribution of Fatigue Life of Composite Materials for Small Wind-Turbine Blades (소형풍력발전 블레이드용 복합재료의 피로수명 분포에 대한 확률론적 평가)

  • Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1281-1289
    • /
    • 2011
  • This paper deals with several statistical distribution functions for the analysis of fatigue life data of composite laminates for small wind-turbine blades. A series of tensile tests was performed on triaxial glass/epoxy laminates for loading directions of $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$. Then, fatigue tests were carried out to determine the fatigue life at the aforementioned loading directions and the fatigue stresses at four levels. Two-parameter Weibull, three-parameter Weibull, normal, and log-normal distributions were used to fit the fatigue life data of the triaxial composite laminates. The three-parameter Weibull distribution most accurately described the fatigue life data measured experimentally for all the cases considered. Furthermore, the variation of fatigue life was simultaneously affected by the loading direction and fatigue stress level.

Effect of Functional Ankle Instability and Surgical Treatment on Dynamic Postural Stability and Leg Stiffness Variables during Vertical-Drop Landing

  • Jeon, Kyoung Kyu;Kim, Kew Wan;Ryew, Che Cheong;Hyun, Seung Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.2
    • /
    • pp.135-141
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the effect of functional ankle instability (FAI) and surgical treatment (ST) on postural stability and leg stiffness during vertical-drop landing. Method: A total of 21 men participated in this study (normal [NOR]: 7, FAI: 7, ST: 7). We estimated dimensionless leg stiffness as the ratio of the peak vertical ground reaction force and the change in stance-phase leg length. Leg length was calculated as the distance from the center of the pelvis to the center of pressure under the foot. Furthermore, the analyzed variables included the loading rate and the dynamic postural stability index (DPSI; medial-lateral [ML], anterior-posterior [AP], and vertical [V]) in the initial contact phase. Results: The dimensionless leg stiffness in the FAI group was higher than that of the NOR group and the ST group (p = .018). This result may be due to a smaller change in stance-phase leg length (p = .001). DPSI (ML, AP, and V) and loading rate did not show differences according to the types of ankle instability during drop landing (p > .05). Conclusion: This study suggested that the dimensionless leg stiffness was within the normal range in the ST group, whereas it was increased by the stiffness of the legs rather than the peak vertical force during vertical-drop landing in the FAI group. Identifying these potential differences may enable clinicians to assess ankle instability and design rehabilitation protocols specific for the impairment.

Seismic loading response of piled systems on soft soils - Influence of the Rayleigh damping

  • Jimenez, Guillermo A. Lopez;Dias, Daniel;Jenck, Orianne
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.155-170
    • /
    • 2022
  • An accurate analysis of structures supported on soft soils and subjected to seismic loading requires the consideration of the soil-foundation-structure interaction. An important aspect of this interaction lies with the energy dissipation due to soil material damping. Unlike advanced constitutive models that can induce energy loss, the use of simple elastoplastic constitutive models requires additional damping. The frequency dependent Rayleigh damping is a formulation that is frequently used in dynamic analysis. The main concern of this formulation is the correct selection of the target damping ratio and the frequency range where the response is frequency independent. The objective of this study is to investigate the effects of the Rayleigh damping parameters in soil-pile-structure and soil-inclusion-platform-structure systems in the presence of soft soil under seismic loading. Three-dimensional analyses of both systems are carried out using the finite difference software Flac3D. Different values of target damping ratios and minimum frequencies are utilized. Several earthquakes are used to study the influence of different excitation frequencies in the systems. The soil response in terms of accelerations, displacements and strains is obtained. For the rigid elements, the results are presented in terms of bending moments and normal forces. The results show that when the frequency of the input motion is close to the minimum (central) frequency in the Rayleigh damping formulation, the overdamping amount is reduced, and the surface spectral acceleration of the analyzed pile and inclusion systems increases. Thus, the bending moments and normal forces throughout the piles and inclusions also increase.

Post-peak response analysis of SFRC columns including spalling and buckling

  • Dhakal, Rajesh P.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.311-330
    • /
    • 2006
  • Standard compression tests of steel fiber reinforced concrete (SFRC) cylinders are conducted to formulate compressive stress versus compressive strain relationship of SFRC. Axial pullout tests of SFRC specimens are also conducted to explore its tensile stress strain relationship. Cover concrete spalling and reinforcement buckling models developed originally for normal reinforced concrete are modified to extend their application to SFRC. Thus obtained monotonic material models of concrete and reinforcing bars in SFRC members are combined with unloading/reloading loops used in the cyclic models of concrete and reinforcing bars in normal reinforced concrete. The resulting path-dependent cyclic material models are then incorporated in a finite-element based fiber analysis program. The applicability of these models at member level is verified by simulating cyclic lateral loading tests of SFRC columns under constant axial compression. The analysis using the proposed SFRC models yield results that are much closer to the experimental results than the analytical results obtained using the normal reinforced concrete models are.

Properties of Thermal Expansion Strain of Light Weight Aggregate Concrete with Loading Conditions (하중조건에 따른 경량골재 콘크리트의 열팽창변형 특성)

  • Yoon, Min-Ho;Kim, Gyu-Yong;Lee, Tae-Gyu;Nam, Jeong-Soo;Shin, Kyoung-Su;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.255-256
    • /
    • 2012
  • In this study, strain properties of high strength concrete using light weight aggregate which is widely used in recent years are evaluated. For these purpose, thermal strain, transient creep were measured in prestressed condition as 0, 20, 40% of specimen strength at target temperature with 60MPa specimens which was using normal and light weight aggregate. As a result, light weight aggregate is more advantageous for the control of strain than normal aggregate because of its low thermal expansion.

  • PDF

THE PROTEIN COMPOSITION OF GINGIVAL CREVICULAR FLUID AND SERUM SAMPLED FROM NORMAL SUBJECTS (정상 치은 열구액과 혈청 단백질 조성에 관한 연구)

  • Lim, Jong-Deuk;Moon, Jin-Kyun;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.1
    • /
    • pp.178-184
    • /
    • 1994
  • This study was undertaken to examine the protein content of GCF and serum from noraml population in order to standardize the sample loading on SDS/PAGE gels. The resulats were as follows ; 1. The protein concentration of serum was not different between normal group and diseased group. 2. In GCF, the bands of lower molecular weight than albumin were heavily stained, but in serum, the protein bands of higher molecalar weight were found. 3. The profile of protein in normal GCF was characterized by heavily staining bands at 77, 66, 55, 26 KDa corresponding to the positions of transferrin, albumin, heavy and light chains of Ig G. Also 47, 37 KDa nonplasma proteins were found.

  • PDF