• Title/Summary/Keyword: Normal Flow Season

Search Result 19, Processing Time 0.026 seconds

The Effect of Weather and Season on Pedestrian Volume in Urban Space (도시공간에서 날씨와 계절이 보행량에 미치는 영향)

  • Lee, Su-mi;Hong, Sungjo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.56-65
    • /
    • 2019
  • This study empirically analyzes the effect of weather on pedestrian volume in an urban space. We used data from the 2009 Seoul Flow Population Survey and constructed a model with the pedestrian volume as a dependent variable and the weather and physical environment as independent variables. We constructed 28 models and compared the results to determine the effects of weather on pedestrian volume by season, land use, and time zone. A negative binomial regression model was used because the dependent variable did not have a normal distribution. The results show that weather affects the volume of walking. Rain reduced walking volume in most models, and snow and thunderstorms reduced the volume in a small number of models. The effects of the weather depended on the season and land use, and the effects of environmental factors depended on the season. The results have various policy implications. First, it is necessary to provide semi-outdoor urban spaces that can cope with snow or rain. Second, it is necessary to have different policies to encourage walking for each season.

Evaluation of Habitat Improvement Using Two-Dimensional Fish Habitat Modeling after the Connectivity Restoration in an Isolated Former Channel (2차원 어류 서식처 모의를 이용한 격리된 구하도의 연결성 복원에 따른 서식지 개선 평가)

  • Kim, Seog Hyun;Kim, Dana;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.2
    • /
    • pp.137-146
    • /
    • 2015
  • Lateral connectivity between a main channel and a former channel plays an integral role in maintaining ecological functions of stream-floodplain ecosystems. This study virtually restored the connectivity of the former channel, which is currently isolated by channelization, in the Mangyeong River, Korea. Fish habitat improvement after the connectivity restoration was evaluated using River2D, two-dimensional depth-averaged hydraulic modeling, depending on normal and flood flow conditions. Target fish species were crucian carp (Carassius auratus), which are known as lentic species, and pale chub (Zacco platypus), known as lotic species. The weighted usable area (WUA) of the two species was increased after the connectivity restoration: the two-way connection between the main and formal channels was more effective than the one-way connection. The result of the physical habitat simulation at a flood flow condition demonstrated an increased rate of the WUA than during a normal flow condition. In particular, the WUA of pale chub increased about four times on the two-way connectivity restoration. This result suggests that habitat availability of both lentic and lotic fish species will increase after a connectivity restoration, and a two-way connectivity restoration may be more effective. In addition, the restored formal channel would function as a shelter for fish during the flood season.

Effect of Installing a Selective Withdrawal Structure for the Control of Turbid Water in Soyang Reservoir (탁수조절을 위한 소양호 선택취수설비 설치 효과 분석)

  • Chung, Se Woong;Park, Hyung Seok;Yoon, Sung Wan;Ryu, In Gu
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.743-753
    • /
    • 2011
  • One of the most important water management issues of Soyang Reservoir, located in North Han River in Korea, is a long term discharge of turbid water to downstream during flood season. Installation of a selective withdrawal structure (SWS) is planned by the reservoir management institute as a control measure of outflow water quality and associated negative impacts on downstream water use and ecosystem. The objective of the study was to explore the effectiveness of the SWS on the control of outflow turbidity under two different hydrological years; one for normal flood year and another for extreme flood year. A two-dimensional (2D), laterally averaged hydrodynamic and water quality model (CE-QUAL-W2) was set up and calibrated for the reservoir and used to evaluate the performance of the proposed SWS. The results revealed that the SWS can be an effective method when the ${\Theta}$ value, the ratio between the amount of turbid water that containing suspended sediment (SS) greater than 25 mg/L and the total storage of the reservoir, is 0.59 during the normal flood year. However, the effectiveness of the SWS could be marginal or negative in the extreme flood year when ${\Theta}$ was 0.83. The results imply that the SWS is an effective alternative for the control of turbid water for moderate flood events, but not a sufficient measure for large flood events that are expected to happen more often in the future because of climate change.

Proposal for Estimation Method of the Suspended Solid Concentration in EIA (환경영향평가에서 부유사 농도 추정 방법 제안)

  • Choo, Tai Ho;Kim, Young Hwan;Park, Bong Soo;Kwon, Jae Wook;Cho, Hyun Min
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.30-36
    • /
    • 2017
  • SS(Suspended Solid) concentration by soil erosion into river at normal and flood season should be measured. However, to present the variation of SS due to various development project such as EIA(Environmental Impact Assessment), River Master Plan, and so on, it is necessary to estimate not measure SS, but there are not exist how to estimate SS. In the present study, therefore, we propose the hydrologic method of estimating SS concentration using the results of particular frequency flood discharge and sediment discharge by RUSLE method. SS consists of silty and clay soil and colloid particle etc. However, in the present study, silty and clay soils of sediment discharge except send set up SS standards. The flow discharge to estimate SS concentration are 1~2 years for normal season, 30~100 years for flood season. Meanwhile, analysis software for probable rainfall uses Fard2006, probable rainfalls under 2-year frequency are estimated using rainfall data and frequency factor of Gumbel distribution. The results of estimating SS concentration using runoff volume by sediment and flow discharges of silty and cray soils as above method show that reliable level of SS concentration is considered in predevelopment of natural condition and under development of barren condition. Especially, SS concentration takes notice that the value of sediment discharge makes a huge difference according to channel slope, it was confirmed that the value obtained by dividing the SS concentration by the channel slope is relatively constant even though the topographical factors are different. Therefore, if the present study will be proceeded for various watersheds, it will be developed as estimation method of SS concentration.

Mammary Cell Turnover under High Temperature during the Dry Period in Dairy Cows

  • Peng, Xiaoqing;Lu, Lin;Li, Yan;Yan, Peishi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.4
    • /
    • pp.485-492
    • /
    • 2011
  • The influence of high temperature on mammary cell turnover during the dry period is still unclear. The objective of this study was to investigate mammary cell turnover and p53 protein expression in the mammary tissue under high temperature conditions. Mammary gland biopsy samples from 8 dairy cows were obtained at 7, 25, 40, and 53 d during the dry period in summer or spring (n = 4, each season). Cell cycle, cell turnover, and p53 protein expression were analyzed by flow cytometry. During the dry period in summer, the percentage of mammary epithelial cells in the G0/G1 phase was the highest, but those in the S and G2/M phases were lower. However, the proportion of cells in the different stages of the cell cycle was not significantly different among the different biopsy time points, except in the G2/M phase. Under different temperature conditions, the cells were significantly different in their apoptotic rate and proliferation index; moreover, the tendencies of these indicators to change significantly differed. In general, the samples under high temperature conditions showed significantly lower apoptotic rates and proliferation indices. Under high temperature conditions, the apoptotic rate and proliferation index were the lowest (2.17% and 3.26%, respectively) at day 40, and the highest at day 53 (3.67% and 4.61%, respectively). However, under normal temperature conditions, the values of these indicators were the lowest (7.60% and 5.54%, respectively) at day 7, and almost the highest at day 25 (12.85% and 6.47%, respectively). Moreover, p53 protein expression was significantly higher under high temperature conditions than under normal temperature conditions, except at day 25. The level of p53 protein was the lowest (13.10%) under high temperature conditions at day 25, but was the highest (26.07%) under normal temperature conditions. Our findings suggest that high temperature delayed the G2/M phase of the cell cycle and the cell turnover rate, but remarkably increased p53 protein expression. Thus, the results indicate that high temperature extends the recovery period of mammary epithelial cells.

Development of the Technology Transfer System In Reservoir operation

  • ITO Kazumasa;IMANISHI Yumi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.44-51
    • /
    • 2005
  • Water flow in rivers during flood season can be 10 to 100 fold higher than normal seasons (low precipitation) in Japan and predicting flood runoff is essential for operating reservoirs with discharging gates. Abundant experiences and knowledge are requisites for operators to be able to make efficient decisions at work. This research investigated a method to transfer technical knowledge by acquiring skills and knowledge from actual dam operators and by using the information to construct an educational training system. The purpose of the research was to enable the execution of a secure and rational reservoir operation during flood period. The educational training system for reservoir operation was developed with the focuses on acquiring knowledge on hydraulics and hydrology and learning about decision making related to the reservoir operation as well as the timing of control. The system is capable of conducting education that corresponds to individual levels in each location. Of the educational training methods, a lecture method that uses textbooks is effective for the understanding of basic knowledge and concepts while a training method that uses a simulation device is essential for the practice of advanced and specialized procedures in specific fields. Simulation devices are used in operational training for airplane flight and driving cars and trains. The educational system presented here was designed to provide further assistance to those who have acquired basic knowledge and concepts through textbooks and also to at low them to perform the satisfactory operation of dam equipment. Our research proposes a method which can realize a system to acquire technical skills-the skills which are the foundation of technical knowledge and operation.

  • PDF

Correlation between Meteorological Factors and Water Discharge from the Nakdong River Barrage, Korea (낙동강 하구역 해양물리환경에 미치는 영향인자 비교분석(I) - 하구둑 방류량과 기상인자 -)

  • Park, San;Yaan, Han-Sam;Lee, In-Cheal;Kim, Hean-Tae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • We estirmted the yearly and monthly variation in discharge from the Nakdong River Barrage. We studied the total monthly discharge, the mean daily discharge, and the maximum daily discharge based on the observational discharge data for the 11-year period 1996-2006. We also examined the correlation between the discharge and the meteorologiml factors that influence the river inflow. The results from this study are as follows. (1) The total monthly discharge for 11 years at the Nakdong River Barrage was $224,576.8{\times}10^6\;m^3$: The daily maximum was in 2003, with $56,292.3{\times}10^6\;m^3$. The largest daily mean release discharges occurred in August with $52,634.2{\times}10^6\;m^3$ (23.4% of the year), followed by July and September in that order with 23.1 and 17%, respectively. (2) The monthly pattern of discharge could be divided into the flood season for the period July-September (discharge =$1000{\times}10^6\;m^3$/day), the normal season from April to June and October (discharge=$300{\times}10^6\;m^3$/day), and the drought season from December to March (discharge < $300{\times}10^6\;m^3$/day). (3) Periods of high temperature, low evaporation loss, and short sunshine duration produced a much higher discharge in general. Conditions of low rainfall and high evaporation loss, as was the rose in 2003, tended to reduce the discharge, but high rainfall and low evaporation loss tended to increase the discharge as it did in 200l. (4) The dominant wind directions during periods of high discharge were NNE (15.5%), SW and SSW (13.1%), S(12.1%), and NE (10.8%) This results show that it run bring on accumulation of fresh water when northern winds are dominant, and it run flow out fresh water toward offslwre when southern winds are dominant.

  • PDF

Numerical analysis of solar heat gain on slim-type double-skin window systems - Heat transfer phenomena with opening of windows and vent slot in summer condition - (전산유체 해석을 통한 슬림형 이중외피 창호의 태양열 취득량 분석 - 높은 태양고도 및 하절기 냉방조건에서의 자연환기구 적용 및 창문 조절 방식별 비교 -)

  • Park, Ji-Ho;Oh, Eun-Joo;Cho, Dong-Woo;Cho, Kyung-Joo;Yu, Jung-Yeon
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.69-75
    • /
    • 2017
  • Purpose: Heat transfer analysis of recently developed 'slim type double-skin system window' were presented. This window system is designed for curtain wall type façade that main energy loss factor of recent elegant buildings. And the double skin system is the dual window system integrated with inner shading component, enclosed gap space made by two windows when both windows were closed and shading component effectively reflect and terminate solar radiation from outdoor. Usually double-skin system requires much more space than normal window systems but this development has limited by 270mm, facilitated for curtain wall façade buildings. In this study, we estimated thermophysical phenomena of our double-skin curtain wall system window with solar load conditions at the summer season. Method: A fully 3-Dimentional analysis adopted for flow and convective and radiative heat transfer. The commercial CFD package were used to model the surface to surface radiation for opaque solid region of windows' frame, transparent glass, fluid region at inside of double-skin and indoor/outdoor environments. Result: Steep angle of solar incident occur at solar summer conditions. And this steep solar ray cause direct heat absorption from outside of frame surface rather than transmitted through the glass. Moreover, reflection effect of shading unit inside at the double-skin window system was nearly disappeared because of solar incident angle. With this circumstances, double-skin window system effectively cuts the heat transfer from outdoor to indoor due to separation of air space between outdoor and indoor with inner space of double-skin window system.

Operating Status and Improvement Plans of Ten Wetlands Constructed in Dam Reservoirs in Korea (국내 10개 댐저수지 인공습지의 운영현황 및 개선방안)

  • Choi, Kwangsoon;Kim, Sea Won;Kim, Dong Sup;Lee, Yosang
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.431-440
    • /
    • 2014
  • To propose the improvement and management plans to strengthen the pollutant removal efficiency of dam reservoir's constructed wetlands(CWs), the operation status and configuration of CWs (including water depth, operational flow, water flow distribution, residence time, and pollutant removal efficiency, aspect ratio, open water/vegetation ratio etc.) were analyzed in 10 major wetlands constructed in dam reservoirs. The pollutant concentrations in the inflows of the studied CWs were lower than those of American and European constructed wetlands. Especially, organic matter concentrations in all of inflows were below 3 mg/L(as BOD) due to advanced treatment of sewage disposal plant and an intake of low concentration water during dry and normal seasons. The average removal efficiency of total nitrogen(TN) and total phosphorus(TP) for 10 CWs ranged from 7.6~67.6%(mean 24.9%) and -4.9~74.5%(mean 23.7%), respectively, showing high in wetlands treating municipal wastewater. On the other hand, the removal efficiency of BOD was generally low or negative with ranging from -133.3 to 41.7%. From the analysis of the operation status and configuration of CWs, it is suggested that the low removal efficiency of dam reservoir's CWs were caused by both structural (inappropriate aspect ratio, excessive open water area) and operational (neglecting water-level management, lack of facilities and operation for first flush treatment, lake of monitoring during rainy events) problems. Therefore, to enable to play a role as a reduction facility of non-point source(NPS) pollutants, an appropriate design and operation manuals for dam reservoir's CW is urgently needed. In addition, the monitoring during rainy events, when NPS runoff occur, must be included in operation manual of CW, and then the data obtained from the monitoring is considered in estimation of the pollutant removal efficiency by dam reservoir's CW.