• Title/Summary/Keyword: Nonpoint pollutants

Search Result 150, Processing Time 0.022 seconds

Assessing Nonpoint Sources Pollution Affected by Regulating Gate and Liquid Manure Application in Small Agricultural Watershed (제수문 영향 및 액비시용 증가에 따른 농업소유역에서의 비점오염원 특성 평가)

  • Song, Jae-Do;Jang, Taeil;Son, Jae-Kwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.6
    • /
    • pp.31-38
    • /
    • 2016
  • The purpose of this study was to assess nonpoint sources (NPS) pollution affected by liquid manure and regulating gate in a small agricultural watershed. The study area, which is a wide plain farmland, was operating by the Buyong regulating gate in order to maintain irrigation water level during irrigation period. Consequentially, runoff only occurs through the gate at each event in rainy season for avoiding farmland inundation. In addition, the usage ratio of liquid manure in the study area has been increased greatly since 2014. Discharge loads at the Hwaingsan bridge subwatershed were 1.2 times for T-N, 4-10 times for T-P, and 3-8 times for TOC compared with the Soyang watershed (control) during study period. The reason was that NPS pollutants from upper Gpeun and Sangri bridge subwatersheds, which are widely spraying with livestock liquid manure, were stack at this subwaterehd because of regulating gate in non-rainy seasons. A number of agricultural watersheds in Saemangeum watershed are affected by regulating gate and vigorous livestock activities so that substantial management schemes under controling regulating gate are needed for minimizing livestock related NPS.

Characteristics of Nonpoint Source Pollution from a Reclaimed Rice Paddy Field (계화 간척지구 강우 유출수의 비점오염원 유출특성에 관한 연구)

  • Lu, Weiwei;Yi, Qitao;Yu, Jianghua;Kim, Young-Chul
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.9-19
    • /
    • 2009
  • This research addressed nonpoint source (NPS) pollution characteristics in a reclaimed rice paddy field. The paddy has an area of around 2,998 ha and is divided as two sub-watersheds, whose areas are 1,181 ha and 1,817 ha, respectively. Monitoring of hydrologic runoff and NPS pollution was undertaken during three-month period from June to August, 2008. Totally, three sampling trips were made when rainfall depth were 66.0 mm, 23.5 mm, and 23.0 mm, respectively. Generally pollution load increased with the heavier cultivation activity in Korea. Exported pollutants from the rice paddy, including TSS, TN and TP, have same levels as forest discharge. Organic nitrogen is main pattern but it mainly exists in the forms of dissolved organic nitrogen (DON). For phosphorus, dissolved inorganic phosphorus (DIP) takes the main part although part of them is associated with fine particles. This is different compared with other watersheds, where particles-associated phosphorus is the main form.

  • PDF

Determination of First Flush Criteria in Highway Stormwater Runoff using Dynamic EMCs (동적 EMC를 이용한 고속도로 초기우수 처리 기준 산정)

  • Kim, Lee-Hyung;Lee, Eun-Ju;Ko, Seok-Oh;Kim, Sung-Gil;Lee, Byung-Sik;Lee, Joo-Kwang;Kang, Hee-Man
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.294-299
    • /
    • 2006
  • The Ministry of Environment in Korea has introduced Total Pollution Load Management System (TPLMS) in major 4 large rivers to protect the water quality from possible pollutants. In order to successfully achieve the TPLMS, the nonpoint source should be controled by applying the best management practices in highly polluted areas. Of the various nonpoint sources, the highways are stormwater intensive landuses because of its high imperviousness and high pollutant mass emissions. The EMC (Event Mean Concentration) is an important parameter to correctly determine the pollutant mass loadings from nonpoint sources. However, it has wide ranges because of various reasons such as first flush phenomenon, rainfall and watershed characteristics. Even though the EMC is closely related to the first flush phenomenon, the relationship have not proven until present. Therefore, in this paper, the dynamic EMC method will be introduced to clearly make the relationship between EMC and first flush phenomenon. Also by applying the dynamic EMC method to monitored data, we found that the highly concentrated stormwater runoff was washed off within 20~50 minutes storm duration. The first flush criteria for economical treatment was also determined to 5~10 mm (mean=7.4 mm) as a cumulative rainfall.

The Management Methods of Multi-Purpose Ecological Reservoir by System Thinking - Focused on Anteo Eco Park - (시스템 사고를 통한 다기능 생태저류지의 관리방안 - 광명 안터생태공원을 중심으로 -)

  • Lee, HyunJi;You, Soojin;Chon, Jinhyung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.2
    • /
    • pp.1-17
    • /
    • 2015
  • Ecological reservoir is a multifunctional space where provides the functions of retention, animal habitat and improvement of ecosystem health and landscape. The ecological reservoir of Anteo Eco Park located in Gwangmyeong-si has established to functions for water purification, maintenance of healthy aquatic ecosystem. Because the Anteo Eco Park is located in the site where nonpoint pollutant materials flow in, Anteo Eco Park has potential factors which aquatic ecosystem health deteriorates and damages the habitat of golden frog(Rana plancyi chosenica) which is restoration target species. Therefore, the purpose of this study is to suggest the plan to manage the variables which impede the right functions of aquatic ecosystem by understanding the causal loop diagram for the change of water quality environment and the interaction of predator-prey through system thinking. The results are as follows. First, the study showed that the individual number of golden frog which is an indicator species of Anteo Eco Park is threatened by snakeheaded fish, which is an upper predator. Therefore, balanced food chain should be hold to protect golden frog by capturing the snakeheaded fish which is individual number's density is high, and the monitoring management of the individual number for predator(snakeheaded fish)-prey(golden frog) should be performed. Second, the study represented that water pollution and carnification is caused by the sediment as the dead body of the large emergent vegetation in the winter cumulates as sediment. Ecological reservoir in Anteo Eco Park has been managed by eliminating the dead body of the large emergent vegetation, but the guideline for the proper density maintenance of vegetation community is additionally needed. Lastly, the study showed that aquatic ecosystem of Anteo Eco Park where is contaminated from the inflow of nonpoint pollutants affects the individual number's decline of golden frog and snakeheaded fish. Accordingly, the creation of a buffer area and a substitution wetland is needed in the periphery of the Anteo Eco Park to control the inflow of nonpoint pollutants including organic matters, nutrients and heavy metals. This study will be helpful that Anteo Eco Park improves the regional landscape and maintain healthy aquatic ecosystem space for the park visitors including local residents.

Study on the Performances and Microbial Community in the Biofilm Process for Treating Nonpoint Source Pollutants (비점오염물질 처리를 위한 생물막 공정의 운전 및 미생물 군집의 특성)

  • Choi, Gi-Choong;Park, Jeung-Jin;Kang, Du-Kee;Yu, Jae-Cheul;Byun, Im-Gyu;Shin, Hyun-Suk;Lee, Tae-Ho;Park, Tae-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.1021-1027
    • /
    • 2008
  • In this study, biofilm process was introduced for treating nonpoint source pollutants. The ceramic media were provided for biofilm growth in the reactors. The packing ratio of ceramic media was 5% and 15(v/v)%, respectively. Thereafter, the reactors were operated intermittently with the different interevent periods such as 0, 5, 10 and 15 days, respectively. The removal efficiencies of COD and NH$_4{^+}$-N were investigated at the different operating conditions such as media packing ratio, temperature, and interevent period. Additionally, Polymerase chain reaction(PCR)-denaturing gel gradient electrophoresis(DGGE) and INT-dehydrogenase activity(DHA) test were conducted to observe the microbial community and activity in the biofilm. Consequently, the interevent period seemed to have no significant influence on the COD removal efficiency. COD was removed within 6$\sim$8 hours at 25$^{\circ}C$ and about 15 hours at 10$^{\circ}C$. DGGE profiles showed that the initial species of microorganisms were changed from seeded activated sludge into the microorganisms detected in sediments. INT-DHA test also showed that the activities of microorgnaisms were not decreased even in the 15 days of interevent period.

Analysis on the Runoff Reduction Efficiency of Non Point Pollutants in Animal Feeding Area Using Artificial Reservoir (인공 저류지를 이용한 축산 지역 비점오염물질 유출 저감 효율 분석)

  • Oa, Seong-Wook
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.417-423
    • /
    • 2018
  • It analyzed the efficiency of the runoff reduction of artificial reservoir by analyzing the influent and effluent of reservoir located downstream of the livestock area. Production of non point pollutants in livestock feeding areas, which is located at steep slope land, was mainly due to first flushes. Suspended Solid concentration of influent increased due to amount of rainfall, and T-P also increased over four times and 30 % of total nitrogen increased on average compared to those of dry season. While the concentration of nitrate nitrogen showed little variation, ammonia nitrogen increased over two times. The storage style nonpoint reduction facility showed the highest removal efficiency of 53 % for total phosphorus in dry weather, when the removal efficiency was 37 % for suspended solids, 10% for organic compounds, and 5 % for total nitrogen. Since algal bloom grows due to eutrophication in summer, the minus removal efficiencies of nitrogen concentration through the reservoir occurred with high frequency. Removal efficiency decreased during rainfall, showing 60 % for supended solids, and 22 % for total phosphorus. While having over nine times of capacity than the standard of non-point removal facility from Ministry of Environment, it was impounded with water during rainy season, showing not enough nonpoint removal efficiency, which indicates that maintenance is also an important factor to the nonpoint removal efficiency.

Estimation of Pollutant EMCs and Loadings in Highway Runoff (국내 고속도로 강우 유출수의 EMCs 및 유출 부하량 산정)

  • Kim, Lee-Hyung;Ko, Seok-Oh;Lee, Byung-Sik;Kim, Sunggil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.225-231
    • /
    • 2006
  • The nonpoint source control is based on TPLMS (Total Pollution Load Management System) program. Recently, the Ministry of Environment in Korea has programed TPLMS for 4 major large rivers to improve the water quality in rivers by controling the total pollutant loadings from the watershed area. Usually the urbanization is the main pollutant sources, particularly for nonpoint pollutants, because of high imperviousness and high pollutant mass emissions. The stormwater runoff from urban areas is containing various pollutants such as sediments, metals and toxic chemicals due to human and vehicle activities. Of the various landuses, the highways are highly polluted landuses because of high pollutant accumulation rate by vehicle activities during dry periods. Therefore, this research is achieved to provide pollutant EMCs (Event Mean Concentrations) and mass loadings washed-off from highways during rainfall periods. Five monitoring locations were equipped with an automatic rainfall gage and an flow meter. The results show that the EMC ranges for 95% confidence intervals in highway land use are 45.52-125.76 mg/L for TSS, 52.04-95.48 mg/L for COD, 1.77-4.48 mg/L for TN, 0.29-0.54 mg/L for TP. The ranges of washed- off mass loading are $712.7-2,418.4mg/m^2$ for TSS and $684.1-1,779.6mg/m^2$ for COD.

Characteristics of the Pollutants Ronoff on the Tamjin A and B Watershed with Discharge Variation (유량변동에 따른 탐진 A와 B유역에서의 오염물질 유출 특성)

  • Park, Jinhwan;Lim, Byungjin;Jung, Jaewoon;Kim, Daeyoung;Oh, Taeyoun;Lee, Dongjin;Kim, Kapsoon
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.6
    • /
    • pp.917-925
    • /
    • 2012
  • In this study, we report the runoff characteristics of pollutants for Tamjin A and B watershed in Tamjin river basin using statistical analysis, such as correlation analysis and regression equation. Flow rate and water qualtiy data collected from 2 sampling sites(Tamjin A and B watershed) during 3 years(2009~2011) were analyzed for biochemical oxygen demand(BOD), total nitorgen(TN), total phosphorus(TP) and suspended solid(SS). The results showed that strong correlations were observed between flow rate and SS in Tamjin A, while weak correlations were observed among the BOD, TN, and TP. In Tamjin B, strong correlations were observed among the flow rate, SS and T-P except BOD and TP. Meanwhile, the values of $R^2$ for regression equations between flow rate and pollutants load were greater than 0.7. Results of these statistics indicated that there was a good agreement between flow rate and pollutants load. Also, the flow rate exponents of regression equations for BOD, TN, and TP were smaller than 1 in Tamjin A. In Tamjin B, flow rate exponents of regression equation for BOD and TP were smaller than 1. These results indicated that concentrations of BOD, TN, TP in Tamjin A and concentrations of BOD and TP were decreased as the flow rate was increased. This means that rater than nonpoint sources, point sources affect BOD, TN and TP in Tamjin A and BOD and TP in Tamjin B.

Loading Rates and Characteristics of Litter from Highway Stormwater Runoff (강우로 인해 고속도로로부터 유출되는 폐기물의 성상, 부하량 및 유출 특성)

  • Kim, Lee-Hyung;Kang, Joohyon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.415-421
    • /
    • 2004
  • Litter wastes on highway runoff are gradually being considered one of the major pollutants of concern in protecting the integrity of receiving waters for beneficial use. The California State Water Resources Control Board has identified in their 303(d) list at least 36 water bodies where trash or litter is considered a pollutant of concern. The first TMDL adopted by the Region 4 (Los Angeles area) of the California State Water Quality Control Board was for trash in the Los Angeles River. The first flush characteristic study was developed to obtain first flush water quality and litter data from representative stormwater runoff from standard highway drainage outfalls in the Los Angeles area. Total captured gross pollutants in stormwater runoff were monitored at six Southern California highway sites over two years. The gross pollutants were 90% vegetation and 10% litter. Approximately 50% of the litter was composed of biodegradable materials. The event mean concentrations show an increasing trend with antecedent dry days and a decreasing trend with total runoff volume or total rainfall. Event mean concentrations were ranged 0.0021 to 0.259g/L for wet gross pollutants and 0.0001 to 0.027g/L for wet litters. The first flush phenomenon was evaluated and the impacts of various parameters such as rainfall intensity, drainage area, peak flow rate, and antecedent dry period on litter volume and loading rates were evaluated. First flush phenomenon was generally observed for litter concentrations, but was not apparent with litter mass loading rates. Litter volume and loading rates appear to be directly related to peak storm intensity, antecedent dry days and total flow volume.

Evaluation on the adsorption and desorption capabilities of filter media applied to the nonpoint source pollutant management facilities (비점오염 저감시설에 적용되는 여재의 흡착 및 탈착 능력 평가)

  • Moon, Soyeon;Hong, Jungsun;Choi, Jiyeon;Yu, Gigyung;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • Urbanization causes many environmental, hydrological and ecological problems such as distortion of the natural water circulation system, increase in nonpoint source pollutants in stormwater runoff, degradation of surface water quality, and damage to the ecosystem. Due to the increase in impervious surface by urbanization, developed countries apply low impact development (LID) techniques as important alternatives to reduce the impacts of urbanization. In Korea, LID techniques were employed since 2012 in order to manage nonpoint source pollutants. LID technology is a technique for removing pollutants using a variety of physical, chemical and biological mechanisms in plants, microorganisms and filter media with the reduced effluence of stormwater runoff by mimicking natural water circulation system. These LID facilities are used in a variety of filter media, but an assessment has not been carried out for the comprehensive comparison evaluation of adsorption and desorption characteristics for the pollutant removal capacity. Therefore, this study was conducted to analyze the adsorption and desorption characteristics of various filter media used in the LID facilities such as sand, gravel, bioceramic, wood chips and bottom ash etc. in reducing heavy metals(Pb, Cu). In this study, the adsorption affinity for Pb in all filter media was higher than Cu. Pseudo second order equation and Langmuir-3 isotherm are more applicable in the adsorption kinetic model and adsorption isotherm model, respectively. As a result of the desorption experiment, the filter media does not exceed KSLT which is the hazardous substance leaching limit, showing the capability of the filter media in LID. The bioceramic and woodchip as filter medias were evaluated and exhibited excellent adsorption capacity for Pb.