• Title/Summary/Keyword: Nonparallel Flow

Search Result 4, Processing Time 0.016 seconds

Instability and Transition of Nonparallel Bouyancy-Induced Flows Adjacent to an Ice Surface Melting in Water (얼음 벽면의 융해율을 고려한 비평행 자연대류에서 유동의 불안정성과 천이에 관한 연구)

  • Hwang, Y.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.437-450
    • /
    • 1996
  • A set of stability equations is formulated for natural convection flows adjacent to a vertical isothermal surface melting in cold pure water. It takes account of the nonparallelism of the base flows. The melting rate is regarded as a blowing velocity at the ice surface. The numerical solutions of the linear stability equations which constitute a two-point boundary value problem are accurately obtained for various values of the density extremum parameter $R=(T_m-T_{\infty})/(T_0-T_{\infty})$ in the range $0.3{\leq}R{\leq}0.6$, by using a computer code COLNEW. The blowing effects on the base flow becomes more significant as ambient temperature ($T_{\infty}$) increases to $T_{\infty}=10^{\circ}C$. The maximum decrease of heat transfer rate is about 6.4 percent. The stability results show that the melting at surface causes the critical Grashof number $G^*$ and the maximum frequency of disturbances to decrease. In comparision with the results for the conventional parallel flow model, the nonparallel flow model has a higher critical Grashof number but has lower amplification rates of disturbances than does the parallel flow model. The spatial amplification contours exhibit that the selective frequency $B_0$ of the nonparallel flow model is higher than that of the parallel flow model and that the effects of melting are rather small. The present study also indicates that the selective frequency $B_0$ can be easily predicted by the value of the frequency parameter $B^*$ at $G^*$, which comes from the neutral stability results of the nonparallel flow model.

  • PDF

The wave stability of the nonparallel natural convection flows adjacent to an inclined isothermal surface submerged in water at $4degC$ ($4degC$ 물에 잠겨있는 경사진 등온 벽주위 비평행 자연대류의 파형 안정성)

  • 황영규;장명륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.644-653
    • /
    • 1991
  • A wave instability problem is formulated for natural convection flows adjacent to a inclined isothermal surface in pure water near the density extremum. It accounts for the nonparallelism of the basic flow and temperature fields. Numerical solutions of the hydrodynamic stability equations constitute a two-point boundary value problem which are accurately solved using a computer code COLSYS. Neutral stability results for Prandtl number of 11.6 are obtained for various angles of inclination of a surface in the range from-10 to 30 deg. The neutral stability curves are systematically shifted toward modified Grashof number G=0 as one proceeds from downward-facing inclined plate(.gamma.<0.deg.) to upward-facing inclined plate (.gamma.>0.deg.). Namely, an increase in the positive angle of inclination always cause the flows to be significantly more unstable. The present results are compared with the results for the parallel flow model. The nonparallel flow model has, in general, a higher critical Grashof number than does the parallel flow model. But the neutral stability curves retain their characteristic shapes.

Compressible Boundary Layer Stability Analysis With Parabolized Stability Equations

  • Bing, Gao;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.110-119
    • /
    • 2006
  • An accurate and cost efficient method PSE is used for the stability analysis of 2D or 3D compressible boundary layers. A highly accurate finite difference PSE code has been developed at a general curvilinear coordinate system using an implicit marching procedure to deal with a broad range of transition predictions problems. Evolution of disturbances in compressible flat plate boundary layers are studied for free-stream Mach numbers ranging from 0 to 1.5. The effect of mean-flow nonparallelism is found to be weak on two dimensional waves and strong on three dimensional waves. The maximum amplification rate increases monotonically with Mach number. The present PSE solutions are compared with previous numerical investigations and experimental results and are found to be in good agreement.

  • PDF

High prandtl number natural convection in a low-aspect ratio rectangular enclosure (종횡비 가 낮은 직각밀폐용기내 의 Prandtl 수 가 큰 유체 의 자연대류 에 관한 실험적 연구)

  • 이진호;황규석;현명택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.750-756
    • /
    • 1985
  • Experimental investigation was carried out to study the natural convection of water and silicon oil due to end temperature differences in a horizontally insulated rectangular enclosure of aspect ratio 0.1 with a special attention on the core configuration in the laminar boundary-layer flow regime. Rayleigh number ranges covered herein are Ra=4.40 * 10$^{6}$ -9.64 * 10$^{7}$ for water and Ra=1.69*10$^{5}$ -3.80*10$^{6}$ for silicon oil, respectively. In the case of water, for Ra.geq.2.21 * 10$^{7}$ there appeared distinct horizontal thermal layers adjacent to the horizontal boundaries in the core and the temperature distribution outside the horizontal thermal layers, i.e., in the mid-core region, is vertically stratified. The core flow pattern was shown to be nonparallel with a weak back flow in the mid-core for Ra.geq.3.63 *10$^{7}$ . In the case of silicon oil, distinct horizontal thermal layers appeared along the core horizontal boundaries for Ra.geq.1.27 * 10$^{6}$ with a stratified temperature distribution in the mid-core, but the core flow pattern in this case was shown to be parallel. In addition, secondary flow appeared near the hot wall for Ra.geq.3.80 * 10$^{6}$ . Nusselt number, Nu, was found to be proportional to R $a^{0.3}$ for water and R $a^{0.28}$ for silicon oil in the boundary-layer flow regime. There also in an indication from the comparison with other results that Nu is independent of aspect ratio for water in the boundary-layer flow regime in low aspect ratio enclosures.res.