• 제목/요약/키워드: Nonlocal Theory

검색결과 432건 처리시간 0.024초

Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections

  • Ahmed, Ridha A.;Fenjan, Raad M.;Faleh, Nadhim M.
    • Geomechanics and Engineering
    • /
    • 제17권2호
    • /
    • pp.175-180
    • /
    • 2019
  • This research is concerned with post-buckling investigation of nano-scaled beams constructed from porous functionally graded (FG) materials taking into account geometrical imperfection shape. Hence, two types of nanobeams which are perfect and imperfect have been studied. Porous FG materials are classified based on even or uneven porosity distributions. A higher order nonlinear refined beam theory is used in the present research. Both perfect and imperfect nanobeams are formulated based on this refined theory. A detailed study is provided to understand the effects of geometric imperfection, pore distribution, material distribution and small scale effects on buckling of FG nanobeams.

Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory

  • Belmahi, Samir;Zidour, Mohammed;Meradjah, Mustapha
    • Advances in aircraft and spacecraft science
    • /
    • 제6권1호
    • /
    • pp.1-18
    • /
    • 2019
  • This present article represents the study of the forced vibration of nanobeam of a single-walled carbon nanotube (SWCNTs) surrounded by a polymer matrix. The modeling was done according to the Euler-Bernoulli beam model and with the application of the non-local continuum or elasticity theory. Particulars cases of the local elasticity theory have also been studied for comparison. This model takes into account the different effects of the interaction of the Winkler's type elastic medium with the nanobeam of carbon nanotubes. Then, a study of the influence of the amplitude distribution and the frequency was made by variation of some parameters such as (scale effect ($e_0{^a}$), the dimensional ratio or aspect ratio (L/d), also, bound to the mode number (N) and the effect of the stiffness of elastic medium ($K_w$). The results obtained indicate the dependence of the variation of the amplitude and the frequency with the different parameters of the model, besides they prove the local effect of the stresses.

Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials

  • Karami, Behrouz;Karami, Sara
    • Advances in nano research
    • /
    • 제7권1호
    • /
    • pp.51-61
    • /
    • 2019
  • This paper develops a four-unknown refined plate theory and the Galerkin method to investigate the size-dependent stability behavior of functionally graded material (FGM) under the thermal environment and the FGM having temperature-dependent material properties. In the current study two scale coefficients are considered to examine buckling behavior much accurately. Reuss micromechanical scheme is utilized to estimate the material properties of inhomogeneous nano-size plates. Governing differential equations, classical and non-classical boundary conditions are obtained by utilizing Hamiltonian principles. The results showed the high importance of considering temperature-dependent material properties for buckling analysis. Different influencing parametric on the buckling is studied which may help in design guidelines of such complex structures.

Conventional problem solving on the linear and nonlinear buckling of truncated conical functionally graded imperfect micro-tubes

  • Linyun, Zhou
    • Advances in nano research
    • /
    • 제13권6호
    • /
    • pp.545-559
    • /
    • 2022
  • This paper studies the buckling response of nonuniform functionally graded micro-sized tubes according to the high-order tube theory (HOTT) and classical beam theory (CBT) in addition to nonlocal strain gradient theory. The microtube is made of axially functionally graded material (AFGM). Both inner and outer tube radiuses are changed along the tube length; the microtube is the truncated conical type of tube. The nonlinear partial differential (PD) the formulations are obtained on the basis of the energy conservation method. Then, the linear and nonlinear results are computed via a powerful numerical approach. Finally, the impact of various parameters on the stability of axially functionally graded (AFG) microtube regarding the buckling analysis is discussed.

Wave propagation in double nano-beams in thermal environments using the Reddy's high-order shear deformation theory

  • Fei Wu;Gui-Lin She
    • Advances in nano research
    • /
    • 제14권6호
    • /
    • pp.495-506
    • /
    • 2023
  • We study the bending wave, shear wave and longitudinal wave characteristics in the double nanobeams in this paper for the first time, in the process of research, based on the Reddy's higher-order shear deformation theory and considering shear layer stiffness, linear stiffness, inter-laminar stiffness, the pore volume fraction, temperature variation, functionally graded index influence on wave propagation, based on the nonlocal strain gradient theory and Hamilton variational principle, the wave equation of the double-nanometer beams are derived. Since there are three different motion states for the double nanobeams, which includes the cases of "in phase", "out of phase" and "one nanobeam fixed", the propagation characteristics of shear-, bending-, and longitudinal- waves in these three cases are discussed respectively, and some valuable conclusions are obtained.

Simulation and modeling for stability analysis of functionally graded non-uniform pipes with porosity-dependent properties

  • Peng Zhang;Jun Song;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.235-250
    • /
    • 2023
  • The present paper examines the stability analysis of the buckling differentiae of the small-scale, non-uniform porosity-dependent functionally graded (PD-FG) tube. The high-order beam theory and nonlocal strain gradient theory are operated for the mathematical modeling of nanotubes based on the Hamilton principle. In this paper, the external radius function is non-uniform. In contrast, the internal radius is uniform, and the cross-section changes along the tube length due to these radius functions based on the four types of useful mathematical functions. The PD-FG material distributions are varied in the radial direction and made with ceramics and metals. The governing partial differential equations (PDEs) and associated boundary conditions are solved via a numerical method for different boundary conditions. The received outcomes concerning different presented parameters are valuable to the design and production of small-scale devices and intelligent structures.

Scale-dependent buckling of embedded thermo-electro-magneto-elastic cylindrical nano-shells with different edge conditions

  • Yifei Gui;Honglei Hu
    • Advances in nano research
    • /
    • 제16권6호
    • /
    • pp.601-613
    • /
    • 2024
  • A new analytical buckling solution of a thermo-electro-magneto-elastic (TEME) cylindrical nano-shell made of BiTiO3-CoFe2O4 materials is obtained based on Hamiltonian approach. The Winkler and Pasternak elastic foundations as well as thermo-electro-magneto-mechanical loadings are applied, and two different types of edge conditions are taken into the investigation. According to nonlocal strain gradient theory (NSGT) and surface elasticity theory in conjunction with the Kirchhoff-Love theory, governing equations of the nano-shell are acquired, and the buckling bifurcation condition is obtained by adopting the Navier's method. The detailed parameter study is conducted to investigate the effects of axial and circumferential wave numbers, scale parameters, elastic foundations, edge conditions and thermo-electro-magnetic loadings on the buckling behavior of the nano-shell. The proposed model can be applied in design and analysis of TEME nano components with multi-field coupled behavior, multiple edge conditions and scale effect.

Decaying temperature and dynamic response of a thermoelastic nanobeam to a moving load

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Advances in Computational Design
    • /
    • 제3권1호
    • /
    • pp.1-16
    • /
    • 2018
  • The decaying temperature and dynamic response of a thermoelastic nanobeam subjected to a moving load has been investigated in the context of generalized theory of nonlocal thermoelasticity. The transformed distributions of deflection, temperature, axial displacement and bending moment are obtained by using Laplace transformation. By applying a numerical inversion method, the results of these fields are then inverted and obtained in the physical domain. Also, for a particular two models, numerical results are discussed and presented graphically. Some specific and special results are derived from the current study.

Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory

  • Tahouneh, Vahid;Naei, Mohammad Hasan;Mashhadi, Mahmoud Mosavi
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.717-727
    • /
    • 2019
  • This paper is motivated by the lack of studies in the technical literature concerning to vibration analysis of a single-layered graphene sheet (SLGS) with corner cutout based on the nonlocal elasticity model framework of classical Kirchhoff thin plate. An isogeometric analysis (IGA) based upon non-uniform rational B-spline (NURBS) is employed for approximation of the L-shape SLGS deflection field. Trimming technique is employed to create the cutout in geometry of L-shape plate. The L-shape plate is assumed to be Free (F) in the straight edges of cutout while any arbitrary boundary conditions are applied to the other four straight edges including Simply supported (S), Clamped (C) and Free (F). The Numerical studies are carried out to express the influences of the nonlocal parameter, cutout dimensions, boundary conditions and mode numbers on the variations of the natural frequencies of SLGS. It is precisely shown that these parameters have considerable effects on the free vibration behavior of the system. In addition, numerical results are validated and compared with those achieved using other analysis, where an excellent agreement is found. The effectiveness and the accuracy of the present IGA approach have been demonstrated and it is shown that the IGA is efficient, robust and accurate in terms of nanoplate problems. This study serves as a benchmark for assessing the validity of numerical methods used to analyze the single-layered graphene sheet with corner cutout.

Thermal buckling properties of zigzag single-walled carbon nanotubes using a refined nonlocal model

  • Semmah, Abdelwahed;Beg, O. Anwar;Mahmoud, S.R.;Heireche, Houari;Tounsi, Abdelouahed
    • Advances in materials Research
    • /
    • 제3권2호
    • /
    • pp.77-89
    • /
    • 2014
  • In the present article, the thermal buckling of zigzag single-walled carbon nanotubes (SWCNTs) is studied using a nonlocal refined shear deformation beam theory and Von-Karman geometric nonlinearity. The model developed simulates both small scale effects and higher-order variation of transverse shear strain through the depth of the nanobeam. Furthermore the present formulation also accommodates stress-free boundary conditions on the top and bottom surfaces of the nanobeam. A shear correction factor, therefore, is not required. The equivalent Young's modulus and shear modulus for zigzag SWCNTs are derived using an energy-equivalent model. The present study illustrates that the thermal buckling properties of SWCNTs are strongly dependent on the scale effect and additionally on the chirality of zigzag carbon nanotube. Some illustrative examples are also presented to verify the present formulation and solutions. Good agreement is observed.