• Title/Summary/Keyword: Nonlinear ultrasound

Search Result 32, Processing Time 0.04 seconds

Magnitudes of the Harmonic Components Emitted from Utrasonic Contrast Agents in Response to a Diagnostic Utrasound: Theoretical Consideration (진단용 초음파에 의해 가진된 초음파 조영제에서 방사하는 하모닉 성분의 크기: 이론적 고찰)

  • Kang Gwan Suk;Yu Ji Chul;Paeng Dong Guk;Rhim Sung Min;Choi Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.78-86
    • /
    • 2005
  • This study considers the magnitude of the harmonic components radiated from the ultrasonic contrast agents (UCA) activated by a typical diagnostic ultrasound. The nonlinear dynamic response of UCA to a 2 MHz diagnostic ultrasound pulse was predicted using Gilmore Model. The elastic property of the shell membrane of the UCA was ignored in the numerical model. Simulation was carried out for the UCA varying from 1 - 9 $\mu$m in its initial radius and the driving diagnostic ultrasound whose mechanical index (MI) ranges from 0.125 to 8. The powers of the sub. ultra and second harmonics of the acoustic signal from the UCA activated were compared with that of the fundamental component. The results show that. if the UCA is bigger than its resonant size (2 $\mu$m in radius for the present case) the sub harmonic power was much bigger than the fundamental. In particular, the 2nd harmonic component currently used as an imaging parameter for the harmonic imaging, was predicted to be lower in power than both the sub and the ultra harmonic component. This study indicates that, for obtaining harmonic imaging with UCA, the sub or ultra harmonics could be taken as imaging parameters better than the 2nd harmonic component.

Evaluation of Micro Crack Using Nonlinear Acoustic Effect (초음파의 비선형 특성을 이용한 미세균열 평가)

  • Lee, Tae-Hun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.352-357
    • /
    • 2008
  • The detection of micro cracks in materials at the early stage of fracture is important in many structural safety assurance problems. The nonlinear ultrasonic technique (NUT) has been considered as a positive method for this, since it is more sensitive to micro crack than conventional linear ultrasonic methods. The basic principle is that the waveform is distorted by nonlinear stress-displacement relationship on the crack interface when the ultrasonic wave transmits through, and resultantly higher order harmonics are generated. This phenomenon is called the contact acoustic nonlinearity (CAN). The purpose of this paper is to prove the applicability of CAN experimentally by detection of micro fatigue crack artificailly initiated in Aluminum specimen. For this, we prepared fatigue specimens of Al6061 material with V-notch to initiate the crack, and the amplitude of second order harmonic was measured by scanning along the crack direction. From the results, we could see that the harmonic amplitude had good correlation with COD and it can be used to detect the crack depth in more accurately than the common 6 dB drop echo method.

Parameter Study of Harmonics Generation Using One-dimensional Model of Closed Crack (닫힘균열의 1차원 모델을 이용한 고조파 발생에 대한 파라미터 연구)

  • Yang, Sung-Young;Kim, Noh-Yu
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.5
    • /
    • pp.398-403
    • /
    • 2011
  • When a crack exists under a residual stress, for example in welds, the crack can be closed and it shows non symmetric behavior for tension and compression. Ultrasonic detection method for those nonlinear cracks has been developed recently. The method uses the higher order harmonics generating at the crack surface. In this study, parameter study was carried out for the analysis of the harmonics generation at a nonlinear contact interface as a preliminary study for general 3-dimensional cracks. One-dimensional problem with simple bilinear behavior for the contacting surface was considered. The amplitude of second harmonic to the fundamental wave was obtained for various stiffness ratios, incident frequencies, and the contacting layer thicknesses.

Evaluation of Ultrasonic Nonlinear Characteristics in Artificially Aged Al6061-T6 (인공시효된 Al6061-T6의 초음파 비선형 특성 평가)

  • Kim, Jongbeom;Lee, KyoungJun;Jhang, Kyung-Young;Kim, ChungSeok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.220-225
    • /
    • 2014
  • Generally, the nonlinearity of ultrasonic waves is measured using a nonlinear parameter ${\beta}$, which is defined as the ratio of the second harmonic's magnitude to the power of the fundamental frequency component after the ultrasonic wave propagates through a material. Nonlinear parameter ${\beta}$ is recognized as an effective parameter for evaluating material degradation. In this paper, we evaluated the nonlinear parameter of Al6061-T6 which had been subjected to an artificial aging heat treatment. The measurement was using the transmitted signal obtained from contact-type transducers. After the ultrasonic test, a micro Vickers hardness test was conducted. From the result of the ultrasonic nonlinear parameter, the microstructural changes resulting from the heat treatment were estimated and the hardness test proved that these estimates were reasonable. Experimental results showed a correlation between the ultrasonic nonlinear parameter and microstructural changes produced by precipitation behavior in the material. These results suggest that the evaluation of mechanical properties using ultrasonic nonlinear parameter ${\beta}$ can be used to monitor variations in the mechanical hardness of aluminum alloys in response to an artificial aging heat-treatment.

Motion Compensated Temporal Filter using Nonlinear Optical Flow Estimation for Ultrasound Image (초음파 영상에서 비선형 광학 흐름 추정 방법을 이용한 움직임 보상 시간 필터)

  • Lim, Soo-Chul;Han, Tae-Hee;Kim, Baek-Sop
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.754-756
    • /
    • 2005
  • 본 논문은 연속 초음파 영상에서 움직임 보상 시간 필터를 적용하여 영상의 품질을 향상시키는 방법을 제안한다. 비선형 광학 흐름 추정 방법을 이용하여 화소 단위의 움직임을 추정하고, 이를 바탕으로 시간적 재귀 필터링을 적용한다 화소 단위 움직임 벡터의 양이 작을 경우 필터링을 크게 하고, 움직임 벡터의 양이 클 경우 필터링을 작게 적용한다. 그 결과 프로브에 의한 전역적 움직임과 측정 대상물에 의한 국부적 움직임으로 발생되는 블러 현상을 극소화하고 잡음을 감소시켜 영상의 품질을 향상시켰다.

  • PDF

Evaluation of Ultrasonic Nonlinear Characteristics in Heat-Treated Aluminum Alloy (열처리된 알루미늄 합금의 초음파 비선형 특성 평가)

  • Kim, JongBeom;Cheon, Chung;Jhang, Kyung-Young;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.193-197
    • /
    • 2013
  • In this study, ultrasonic nonlinear characteristics in the heat-treated aluminum alloy have been evaluated. The nonlinearity of ultrasonic wave has been measured as the acoustic nonlinear parameter ${\beta}$, depending upon the amplitude ratio of the second-order harmonic and the fundamental frequency component of ultrasonic wave propagating through the materials. The parameter ${\beta}$ measurement has been carried out with the reflected signals from the back-wall of specimens at the same plane using the contact-type transducers. The heat-treatment, aging, has been achieved at $300^{\circ}C$ for various durations in the range of 1 to 50 hours. The tensile strength and elongation are obtained by the tensile test and then compared with the parameter ${\beta}$. There is a peak of the acoustic nonlinear parameter ${\beta}$ on 5 hours aging and the ${\beta}$ decreases thereafter, exhibiting closed relations with tensile strength and elongation. Also, the heat-treatment time showing peak in the parameter ${\beta}$ was identical to that showing severe change in the ${\sigma}-{\varepsilon}$ curve. These results suggest that the acoustic nonlinear parameter ${\beta}$ can be used for monitoring the strength variations with aging of aluminum alloys.

Image Enhancement for Sub-Harmonic Phased Array by Removing Surface Wave Interference with Spatial Frequency Filter

  • Park, Choon-Su;Kim, Jun-Woo;Cho, Seung Hyun;Seo, Dae-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.211-219
    • /
    • 2014
  • Closed cracks are difficult to detect using conventional ultrasonic testing because most incident ultrasound passes completely through these cracks. Nonlinear ultrasound inspection using sub-harmonic frequencies a promising method for detecting closed cracks. To implement this method, a sub-harmonic phased array (PA) is proposed to visualize the length of closed cracks in solids. A sub-harmonic PA generally consists of a single transmitter and an array receiver, which detects sub-harmonic waves generated from closed cracks. The PA images are obtained using the total focusing method (TFM), which (with a transmitter and receiving array) employs a full matrix in the observation region to achieve fine image resolution. In particular, the receiving signals are measured using a laser Doppler vibrometer (LDV) to collect PA images for both fundamental and sub-harmonic frequencies. Oblique incidence, which is used to boost sub-harmonic generation, inevitably produces various surface waves that contaminate the signals measured in the receiving transducer. Surface wave interference often degrades PA images severely, and it becomes difficult to read the closed crack's position from the images. Various methods to prevent or eliminate this interference are possible. In particular, enhancing images with signal processing could be a highly cost-effective method. Because periodic patterns distributed in a PA image are the most frequent interference induced by surface waves, spatial frequency filtering is applicable for removing these waves. Experiments clearly demonstrate that the spatial frequency filter improves PA images.

Effect of Cortical Bone on Acoustic Properties of Trabecular Bone in Bovine Femur In Vitro (생체 외 조건의 소 대퇴골에서 해면질골의 음향특성에 대한 피질골의 효과)

  • Hwang, Kyo Seung;Lee, Kang Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.181-189
    • /
    • 2013
  • The purpose of the present study is to investigate the effect of cortical bone on acoustic properties of trabecular bone, such as speed of sound (SOS) and normalized broadband ultrasound attenuation (nBUA), in bovine femur in vitro. Twelve trabecular bone samples and three cortical bone plates with thicknesses of 1.00, 1.47, and 2.00 mm were extracted from the proximal end of two bovine femurs. The correlations between acoustic properties and trabecular apparent bone density were also examined before and after attaching a cortical bone plate to the trabecular bone samples. SOS increased linearly with increasing thickness of the cortical plate attached to one side of ultrasonic incidence of the trabecular bone samples, whereas nBUA showed a nonlinear dependence on the thickness of the cortical plate. All the SOS (r = 0.95-0.97) and nBUA (r = 0.53-0.73) measurements with and without the cortical bone plate with various thicknesses were found to exhibit high correlations with the trabecular apparent bone density. These results imply that the acoustic properties measured in the femur with lateral cortical layers in vitro can be useful indices for the prediction of trabecular bone mineral density.

Ultrasonic Evaluation of Interfacial Stiffness for Nonlinear Contact Surfaces

  • Kim, Noh-Yu;Kim, Hyun-Dong;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.504-511
    • /
    • 2008
  • This paper proposes an ultrasonic measurement method for measurement of linear interfacial stiffness of contacting surface between two steel plates subjected to nominal compression pressures. Interfacial stiffness was evaluated by using shear waves reflected at contact interface of two identical solid plates. Three consecutive reflection waves from solid-solid surface are captured by pulse-echo method to evaluate the state of contact interface. A non-dimensional parameter defined as the ratio of their peak-to-peak amplitudes are formulated and used to calculate the quantitative stiffness of interface. Mathematical model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves across the interface and to determine the interfacial stiffness. Two identical plates are fabricated and assembled to form contacting surface and to measure interfacial stiffness at different states of contact pressure by means of bolt fastening. It is found from experiment that the amplitude of interfacial stiffness is dependent on the pressure and successfully determined by employing pulse-echo ultrasonic method without measuring through-transmission waves.

Variations of Speed of Sound and Attenuation Coefficient with Porosity and Structure in Bone Mimics (뼈 모사체에서 다공율 및 구조에 대한 음속 및 감쇠계수의 변화)

  • Kim, Seong-Il;Choi, Min-Joo;Lee, Kang-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.388-394
    • /
    • 2010
  • In the present study, polyacetal bone mimics with circular cylindrical pores were used to investigate variations of speed of sound and attenuation coefficient with porosity and microarchitecture in bone. The speed of sound and attenuation coefficient of the 6 bone mimics with porosities from 0 % to 65.9 % were measured by a through-transmission method in water, using a pair of broadband, unfocused transducers with a diameter of 12.7 mm and a center frequency of 1.0 MHz. Independently of the structural properties of the bone mimics, the speed of sound decreased almost linearly with the increasing porosity. The attenuation coefficient measured at 1.0 MHz exhibited linear or nonlinear correlations with the porosity, depending on the structural properties of the bone mimics. These results are consistent with those previously published by other researchers using bone samples and mimics, and advances our understanding of the relationships of the ultrasonic parameters for the diagnosis of osteoporosis with the bone density and microarchitecture in human bones.