• Title/Summary/Keyword: Nonlinear torque

Search Result 375, Processing Time 0.033 seconds

Experimental Verifications and Electromagnetic Characteristics Analysis of Multi-Pole Permanent Magnet Generator for Small-Scaled Wind Power System (소용량 풍력시스템을 위한 다극 영구자석형 발전기의 전자기적 특성 해석 및 실험적 검증)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Kim, Hyun-Kyu;Choi, Jang-Young;Yoon, Gi-Gap
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.609_610
    • /
    • 2009
  • This paper deals with experimental verifications and the electromagnetic characteristics analysis of multi-pole permanent magnet (PM) generator for small-scaled wind power system. Field distribution due to PMs and winding current, cogging torque considering skew effect are analyzed. In addition, using the equivalent circuit method and dynamic d-q method, generating performance analysis is performed. Analysis results are validated by comparison with nonlinear finite element analyses and experimental results.

  • PDF

A Study on the Improvement of the Shift Characteristics of the Passenger Car Automatic Transmission (승용차용 자동변속기의 변속특성향상에 관한 연구)

  • 조한상;장욱진;박진호;임원석;박영일;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.91-105
    • /
    • 1999
  • Dynamic simulation techniques are developed to analyze the shift characteristics of vehicle powertraisn with automatic transmission. In this study, the mathematical modeling of powertrain components such as engine , clutch system, planetary gear system and road load , is presented for the simulation. The clutch engagement condition, which determines the degree of freedom for the system, is also proposed .By using a detailed nonlinear model of torque converter, it is possibile to accurately analyze the extremely transient state such as the shift. Dynamo-based experiments are carried out to prove the validity of the proposed simulation techniques. Using the developed simulation program, the effects of the dynamic design variables and the control conditions , focused on the shift, are evaluated to improve the driving comforability.

  • PDF

A Study on the Inductance Calculation of SRM using Magnetic Circuit Analysis (자기회로 해석을 통한 SRM의 인덕턴스 산정에 관한 연구)

  • Choi Kyeong-Ho;Kim Dong-Hee;Kim Min-Huei
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.244-248
    • /
    • 2004
  • This paper present a inductance calculation method of Switched Reluctance Motor (SRM) for torque characteristic analysis using analytical model. Recently, many approaches of inductance calculations are accomplished with Finite Element Analysis (FEM) and curve fitting method using complex nonlinear magnetic circuit model. It this paper, a simple method for inductance calculation is proposed based on the motor design parameters. The simulation result of the proposed method are compared with a FEM analysis for, and a good accuracy is obtained.

  • PDF

Mechanical Parameter Identification of Servo Systems using Robust Support Vector Regression (Support Vector Regression을 이용한 서보 시스템의 기계적 상수 추정)

  • Cho Kyung-Rae;Seok Jul-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.468-480
    • /
    • 2005
  • The overall performance of AC servo system is greatly affected the uncertainties of unpredictable mechanical parameter variations and external load disturbances. To overcome this problem, it is necessary to know different parameters and load disturbances subjected to position/speed control. This paper proposes an on-line identification method of mechanical parameters/load disturbances for AC servo system using support vector regression(SVR). The experimental results demonstrate that the proposed SVR algorithm is appropriate for control of unknown servo systems even with time-varying/nonlinear parameters.

Inverse Dynamic Torque Control of a Six-Jointed Robot Arm Using Neural networks (신경회로를 이용한 6축 로보트의 역동력학적 토크제어)

  • 오세영;조문정;문영주
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.8
    • /
    • pp.816-824
    • /
    • 1991
  • It is well known that dynamic control is needed for fast and accurate control. Neural networks are ideal for representing the strongly nonlinear relationship in the dynamic equations including complex unmodeled effects. It thus creates many advantages over conventional methods such as simple, fast and accurate control through neural network's inherent learning and massive parallelism. In this paper, dynamic control of the full six degrees of freedom of an industrial robot arm will be presented using neural networks. Moreover, through application to a real robot the usefulness of neurocontrol is demonstrated. The back propagation and feedback-error learning is used to train the neurocontroller. Simulated control of a PUMA 560 arm demonstrates that it moves at high speed with good accuracy and generalizes over untrained trajectories as well as adapt to unforseen load changes and sensor noise.

Calculating Inductance of Switched Reluctance Motors with overlapping soles of rotor and stator (SRM 고정자와 회전자 중첩에 따른 인덕턴스 계산)

  • Choi, Kyeong-Ho;Back, Won-Sik;Kim, Dong-Hee;Kim, Min-Huei
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.933-935
    • /
    • 2001
  • This paper presents a calculating method for inductance of the Switched Reluctance Motor(SRM) for torque characteristics and driving by analytical model. The approaches for calculating inductance have taken vary from detailed finite element analysis(FEA) and Fitting method in magnetization curves using complex nonlinear magnetic circuit models. But those methods have not satisfactory approach for machine performance calculations, because of having a long time and remodeling for analyses, therefore thus an alternative approach is required. So it is suggested simply calculating method of the inductance based on designed data of machinery by analytical model in unaligned and aligned rotor. In order to prove the calculating, there are compare with analytical FEM, direct measurement, this method, and simulation. The compared result is shown to obtain good accuracy.

  • PDF

The Improvement of Speed Control Performance for Switched Reluctance Motor Drive Using Fuzzy Logic Controller (퍼지제어기를 이용한 SRM의 속도전어 성능향상에 관한 연구)

  • Kim, Sung-Min;Kim, Youn-Hyun;Kim, Sol;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.567-569
    • /
    • 2001
  • This paper presents improved performance on the speed control of Switched Reluctance Motor(SRM) by using fuzzy logic speed controller. The nonlinear model of SRM is used and the motor used in experiment is a 6/4 SRM. In order to prove the superiority of the fuzzy logic controller, it is applied to make use of Matlab simulation program. And to implement the control method on the SRM drive. DSP(TMS320F240) based SRM speed controller is designed and fabricated. The simulation and experiment results show that FLC is effective in settling time maximum overshoot and torque ripple.

  • PDF

Magnetic Circuit Design of BLDC Motor Using Response Surface Methodology (반응표면방법론을 이용한 BLDC 전동기의 자기회로 설계)

  • Lim, Yang-Soo;Kim, Young-Kyoun;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.904-906
    • /
    • 2001
  • This paper presents a magnetic circuit design procedure by using Response Surface Methodology(RSM) to determine initial and detail design parameters for reducing torque ripple in BLDC motor of Electric Power Steering (EPS). RSM is achieved through using the experiment design method in combination with Finite Element Method and well adapted to make analytical model for a complex problem considering a lot of interaction of design variable Moreover, Sequential Quadratic Problem (SQP) method is used to solve the relsulting of constrained nonlinear optimization problem.

  • PDF

The development of compensated bang-bang curent controller for DC series wound motor (직류직권 모타용 보상된 Bang-Bang 전류제어기 개발)

  • 김종건;이만형;배종일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.52-55
    • /
    • 1996
  • In order to establish the robust current controller design technique of series wound motor driver system. This paper proposes a method of compensated Bang-Bang current control using a series wound motor driver system under improperly variable load. To get minimum time torque control. A compensated Bang-Bang current controller structure is simpler than the structure of PID plus Bang-Bang controller. This paper shows that a general 8 bits microprocessor be used efficiently implementing such an algorithm. The calculation time of software is extremely small when compared with conventional PID plus Bang-Bang a controller. Both nonlinear operating characteristics of Digital switching elements and Describing Function methods are used for the analysis and synthesis. Real time implementation of compensated Bang-Bang current is achieved. Concept design strategy of the control and PWM waveform generation algorithms are presented in the paper.

  • PDF

Flow/Pressure/Power Control of Hydraulic Pump Utilizing Switching Control Mode (스위칭 제어 모드를 이용한 유압펌프의 유량/압력/동력 제어)

  • Jung, D.S.;Kim, H.E.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.4
    • /
    • pp.8-14
    • /
    • 2007
  • The electro-hydraulic pump is usually used in testing equipments which require one control function. But until now, it is not applied to industrial equipments which are exposed to severe working environment and require various control functions. This paper proposes a technique which controls continuously flow, pressure and power by utilizing switching control mode. Mathematical model is developed from the continuity equation for the pressurized control volume and the torque balance for the swash plate motion. To simplify the model we make the linear state equation by differentiating the nonlinear model. We analyze the stability and disturbance by using the state variable model. Finally, we review the control performances of flow, pressure and power by tests using PID controller.

  • PDF