• 제목/요약/키워드: Nonlinear time history

검색결과 506건 처리시간 0.023초

점성감쇠기를 이용한 비대칭.비탄성구조물의 내진보강 (Seismic Retrofit of Asymmetric.Elasto-Plastic Structure Using Viscous Dampers)

  • 김진구;방성혁
    • 한국지진공학회논문집
    • /
    • 제6권3호
    • /
    • pp.87-93
    • /
    • 2002
  • 본 연구에서는 평면 비대칭건물의 비탄성 변위를 주어진 목표까지 제한하기 위하여 필요한 추가적인 감쇠량을 구하는 방법에 관하여 연구하였다. 이를 위하여 먼저 비대칭구조물의 항복 후 거동을 분석하고 구조물에 발생하는 연성도 요구량을 이용하여 필요한 등가 감쇠비를 유도하였다. 이러한 방법을 지진하중을 받는 5층 비대칭구조물에 적용하였다. 시간이력해석 결과와의 비교에 따르면 제안된 방법에 따라 점성감쇠기를 설치한 경우 주어진 지진하중에 대하여 약변 및 강변 모두 만족할만한 거동을 보이는 것으로 나타났다.

연속 지진에 의하여 손상된 필로티 RC 건축물의 BRB 보강 전/후의 취약성 평가 (Fragility Assessment of Damaged Piloti-Type RC Building With/Without BRB Under Successive Earthquakes)

  • 신지욱;김준희;이기학
    • 한국지진공학회논문집
    • /
    • 제17권3호
    • /
    • pp.133-141
    • /
    • 2013
  • This paper presents the seismic evaluation and prediction of a damaged piloti-type Reinforced Concrete (RC) building before and after post-retrofitting under successive earthquakes. For considering realistic successive earthquakes, the past records measured at the same station were combined. In this study, the damaged RC building due to the first earthquake was retrofitted with a buckling-restrained brace (BRB) before the second earthquake occurred. Nonlinear Time History Analysis (NTHA) was performed under the scaled intensity of the successive ground motions. Based on the extensive structural response data obtained form from the NTHA, the fragility relationships between the ground shaking intensity and the probability of reaching a pre-determined limit state was were derived. In addition, The the fragility curves of the pre-damaged building without and with the BRBs were employed to evaluate the effect of the successive earthquakes and the post-retrofit effect. Through the seismic assessment subjected to the successive records, it was observed that the seismic performance of the pre-damaged building was significantly affected by the severity of the damage from the first earthquake damages and the hysteresis behavior of the retrofit element.

Seismic risk assessment of deficient reinforced concrete frames in near-fault regions

  • Cao, Vui Van;Ronagh, Hamid Reza;Baji, Hassan
    • Advances in concrete construction
    • /
    • 제2권4호
    • /
    • pp.261-280
    • /
    • 2014
  • In many parts of the world, reinforced concrete (RC) buildings, designed and built in accordance with older codes, have suffered severe damage or even collapse as a result of recent near-fault earthquakes. This is particularly due to the deficiencies of most of the older (and even some of the recent) codes in dealing with near fault events. In this study, a tested three-storey frame designed for gravity loads only was selected to represent those deficient buildings. Nonlinear time history analyses were performed, followed by damage assessment procedures. The results were compared with experimental observation of the same frame showing a good match. Damage and fragility analyses of the frame subjected to 204 pulse-type motions were then performed using a selected damage model and inter-storey drifts. The results showed that the frame located in near-fault regions is extremely vulnerable to ground motions. The results also showed that the damage model better captures the damage distribution in the frame than inter-storey drifts. The first storey was identified as the most fragile and the inner columns of the first storey suffered most damage as indicated by the damage index. The findings would be helpful in the decision making process prior to the strengthening of buildings in near-fault regions.

An extension of an improved forced based design procedure for 3D steel structures

  • Peres, R.;Castro, J.M.;Bento, R.
    • Steel and Composite Structures
    • /
    • 제22권5호
    • /
    • pp.1115-1140
    • /
    • 2016
  • This paper proposes an extension of the Improved Forced Based Design procedure to 3D steel structures. The Improved Forced Based Design (IFBD) procedure consists of a more rational sequence of the design checks proposed in Eurocode 8 and involves a more realistic selection of the behaviour factor instead of selecting an empirical value based on the ductility class and lateral resisting system adopted. The design procedure was tested on a group of four 3D steel structures, composed by moment-resisting frames with three storeys height and the same plan configuration in all storeys. The plan configuration was defined in order to target lateral restrained or unrestrained systems as well as plan regular or irregular structures. The same group of structures was also designed according to the force-based process prescribed in Eurocode 8. The member sizes obtained through the two approaches were compared and the seismic performance was assessed through nonlinear static and time-history analyses. The limit states referred to structural and non-structural damage, considering the two levels design approach, which are the serviceability and the ultimate limit states, were examined. The results obtained reveal that the IFBD leads to more economical structures that still comply with the performance requirements prescribed in Eurocode 8.

Seismic assessment of base-isolated nuclear power plants

  • Farmanbordar, Babak;Adnan, Azlan Bin;Tahir, Mahmood Md.;Faridmehr, Iman
    • Advances in Computational Design
    • /
    • 제2권3호
    • /
    • pp.211-223
    • /
    • 2017
  • This research presented a numerical and experimental study on the seismic performance of first-generation base-isolated and fixed-base nuclear power plants (NPP). Three types of the base isolation system were applied to rehabilitate the first-generation nuclear power plants: frictional pendulum (FP), high-damping rubber (HDR) and lead-rubber (LR) base isolation. Also, an Excel program was proposed for the design of the abovementioned base isolators in accordance with UBC 97 and the Japan Society of Base Isolation Regulation. The seismic assessment was performed using the pushover and nonlinear time history analysis methods in accordance with the FEMA 356 regulation. To validate the adequacy of the proposed design procedure, two small-scale NPPs were constructed at Universiti Teknologi Malaysia's structural laboratory and subjected to a pushover test for two different base conditions, fixed and HDR-isolated base. The results showed that base-isolated structures achieved adequate seismic performance compared with the fixed-base one, and all three isolators led to a significant reduction in the containment's tension, overturning moment and base shear.

The effects of special metallic dampers on the seismic behavior of a vulnerable RC frame

  • Ozkaynak, Hasan
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.483-496
    • /
    • 2017
  • Earthquake excitations may induce important amount of seismic energy into structures. Current design philosophy mainly deals with the plastic deformations of replaceable energy dissipating devices rather than damages accumulated on structural members. Since earthquake damage is substantially concentrated on these devices they could be replaced after severe earthquakes. In this study, the efficiency of steel cushion (SC) on seismic improvement of a vulnerable reinforced concrete (RC) frame is determined by means of several numerical simulations. The cyclic shear behaviors of SCs were determined by performing quasi-static tests. The test results were the main basis of the theoretical model of SCs which were used in the numerical analysis. These analyses were performed on three types of RC frames namely bare frame (BF), full-braced frame (F-BF) and semi-braced frame (S-BF). According to analysis results; implementation of SCs has considerable effects in reducing the storey shear forces and storey drifts. Moreover plastic energy demands of structural elements were reduced which indicates a significant improvement in seismic behavior of the RC frame preventing damage accumulation on structural elements. Full-braced frame having SCs with the thickness of 25 mm has better performance than semi-braced frame interms of energy dissipation. However, global energy dissipation demand of S-BF and F-BF having SCs with the thickness of 18 mm are almost similar.

마찰형 감쇠를 갖는 구조물의 응답 스펙트럼 (Response Spectra of Structure Installed Frictional Damping System)

  • 박지훈;윤경조;민경원;이상현
    • 한국소음진동공학회논문집
    • /
    • 제17권1호
    • /
    • pp.88-94
    • /
    • 2007
  • Structures with additional frictional damping system have strong nonlinearity that the dynamic behavior is highly affected by the relative magnitude between frictional force and excitation load. In this study, normalized response spectra of the structures with non-dimensional friction force are obtained through nonlinear time history analyses of the mass-normalized single degree of freedom systems using 20 ground motion data recorded on rock site. The variation of the control performance of frictional damping system is investigated in terms of the dynamic load and the structural natural period, of which effects were not considered in the previous studies. Least square curve fitting equations are presented for describing those normalized response spectrum and optimal non-dimensional friction forces are obtained for controlling the peak displacement and absolute acceleration of the structure based on the derivative of the curve-fitted design spectrum.

중.저층골조에서 면진주기 설정에 따른 면진효과 (Seismic Isolation Effects According to Set up the Isolation Period in the Medium and Low-rise Framed Building)

  • 천영수;허무원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권6호
    • /
    • pp.93-99
    • /
    • 2010
  • 본 논문에서는 상부구조에 있어서 보-기둥 강성비 변화에 따른 골조의 특성과 상부구조와 면진층 간의 진동주기비에 따른 면진효과를 분석해 보고, 상부골조의 주기와 목표 면진주기의 설정에 따라 면진효과가 어떻게 달라지는가에 대한 정보를 제공하여 향후 면진건물을 설계하기 위한 기본계획을 세우는데 있어서 필요한 기초 자료를 제공하고자 한다. 그 결과 건물골조의 경우 유효한 면진효과를 얻기 위해서는 최소한 상부구조의 고유진동주기 대비 2.5배 이상의 면진주기를 확보하고, 목표 면진주기를 2.0초 이상으로 설정하여 설계할 것을 추천한다.

Towards achieving the desired seismic performance for hybrid coupled structural walls

  • Hung, Chung-Chan;Lu, Wei-Ting
    • Earthquakes and Structures
    • /
    • 제9권6호
    • /
    • pp.1251-1272
    • /
    • 2015
  • It is widely recognized that the preferred yielding mechanism for a hybrid coupled wall structure is that all coupling beams over the height of the structure yield in shear prior to formation of plastic hinges in structural walls. The objective of the study is to provide feasible approaches that are able to promote the preferred seismic performance of hybrid coupled walls. A new design methodology is suggested for this purpose. The coupling ratio, which represents the contribution of coupling beams to the resistance of system overturning moment, is employed as a fundamental design parameter. A series of nonlinear time history analyses on various representative hybrid coupled walls are carried out to examine the adequacy of the design methodology. While the proposed design method is shown to be able to facilitate the desired yielding mechanism in hybrid coupled walls, it is also able to reduce the adverse effects caused by the current design guidelines on the structural design and performance. Furthermore, the analysis results reveal that the state-of-the-art coupled wall design guidelines could produce a coupled wall structure failing to adequately exhaust the energy dissipation capacity of coupling beams before walls yield.

PROBABILISTIC SEISMIC ASSESSMENT OF BASE-ISOLATED NPPS SUBJECTED TO STRONG GROUND MOTIONS OF TOHOKU EARTHQUAKE

  • Ali, Ahmer;Hayah, Nadin Abu;Kim, Dookie;Cho, Ung Gook
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.699-706
    • /
    • 2014
  • The probabilistic seismic performance of a standard Korean nuclear power plant (NPP) with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA) of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA) as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.