Browse > Article
http://dx.doi.org/10.12989/acc.2014.2.4.261

Seismic risk assessment of deficient reinforced concrete frames in near-fault regions  

Cao, Vui Van (School of Civil Engineering, The University of Queensland)
Ronagh, Hamid Reza (School of Civil Engineering, The University of Queensland)
Baji, Hassan (School of Civil Engineering, The University of Queensland)
Publication Information
Advances in concrete construction / v.2, no.4, 2014 , pp. 261-280 More about this Journal
Abstract
In many parts of the world, reinforced concrete (RC) buildings, designed and built in accordance with older codes, have suffered severe damage or even collapse as a result of recent near-fault earthquakes. This is particularly due to the deficiencies of most of the older (and even some of the recent) codes in dealing with near fault events. In this study, a tested three-storey frame designed for gravity loads only was selected to represent those deficient buildings. Nonlinear time history analyses were performed, followed by damage assessment procedures. The results were compared with experimental observation of the same frame showing a good match. Damage and fragility analyses of the frame subjected to 204 pulse-type motions were then performed using a selected damage model and inter-storey drifts. The results showed that the frame located in near-fault regions is extremely vulnerable to ground motions. The results also showed that the damage model better captures the damage distribution in the frame than inter-storey drifts. The first storey was identified as the most fragile and the inner columns of the first storey suffered most damage as indicated by the damage index. The findings would be helpful in the decision making process prior to the strengthening of buildings in near-fault regions.
Keywords
risk assessment; damage analysis; fragility analysis; reinforced concrete frame; near-fault earthquake;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 SeismoSignal (Version 4.1.2). (2010). Pavia, Italy: Seismosoft Ltd. Retrieved from http://www.seismosoft.com/en/HomePage.aspx
2 Sheikh, S.A. and Khoury, S.S. (1993), "Confined concrete columns with stubs", ACI Struct. J., 90(4), 414-431.
3 Shih, M.H., Chen, C.L. and Sung, W.P. (2007), "Collapse analysis of building structures under excitation of near-fault ground motion with consideration of large deformation and displacement", Struct. Des. Tall Spec. Build., 16, 165-180.   DOI
4 Somerville, P. and Graves, R. (1993), "Conditions that give rise to unusually large long period ground mtions", Struct. Des. Tall. Spec. Build., 2, 311-232.
5 Tabeshpour, M.R., Bakhshi, A. and Golafshani, A.A. (2004), "Vulnerability and damage analyses of existing buildings", 13th World Conference on Earthquake Engineering, Paper No. 1261.
6 Takeda, T., Sozen, M.A. and Nielsen, N.N. (1970), "Reinforced concrete response to simulated earthquakes", J. Struct. Div., 96, 2557-2573.
7 Yuksel, E. and Surmeli, M. (2010), "Failure analysis of one-story precast structures for near-fault and farfault strong ground motions", Bull. Earthq. Eng., 8, 937-953.   DOI   ScienceOn
8 Alavi, B. and Krawinkler, H. (2001), Effects of near-fault ground motions on frame structures. Stanford: The John A. Blume Earthquake Engineering Center.
9 Alavi, B. and Krawinkler, H. (2004), "Behavior of moment-resisting frame structures subjected to nearfault ground motions", Earthq. Eng. Struct. Dyn., 33, 687-706.   DOI   ScienceOn
10 ASCE (2000), Prestandard and commentary for the seismic rehabilitation of buildings, Prepared for Federal Emergency Management Agency, FEMA Publication No. 356. Washington, D.C.: Federal Emergency Management Agency.
11 Baker, J.W. (2007), "Quantitative classification of near-fault ground motions using wavelet analysis", Bull. Seismol. Soc.Am., 97(5), 1486-1501.   DOI   ScienceOn
12 Bassam, A., Iranmanesh, A. and Ansari, F. (2011), "A simple quantitative approach for post earthquake damage assessment of flexure dominant reinforced concrete bridges", Eng. Struct., 33, 3218-3225.   DOI   ScienceOn
13 Bertero, V.V., Mahin, S.A. and Herrera, R.A. (1978), "Aseismic design implications of near-fault San Fernando earthquake records", Earthq. Eng. Struct. Dyn., 6(1), 31-42.   DOI
14 Bracci, J.M. (1992), "Experimental and analytical study of seismic damage and retrofit of lightly reinforced concrete structures in low seismicity zones", Ph.D. Thesis, State University of New York at Buffalo.
15 Bracci, J.M., Reinhorn, A.M. and Mander, J.B. (1995), "Seismic resistance of reinforced concrete frame structures designed for gravity loads: performance of structural system", ACI Struct. J., 92(5), 597-608.
16 Choi, H., Saiidi, M.S., Somerville, P. and El-Azazy, S. (2010), "Experimental study of reinforced concrete bridge columns subjected to near-fault ground motions", ACI Struct. J., 107(1), 3-12.
17 Cao, V.V. and Ronagh, H. (2014), "Correlation between parameters of pulse-type motions and damage of low-rise RC frames", Earthq. Struct., 7(3), 365-384, doi: http://dx.doi.org/10.12989/eas.2014.7.3.365   DOI
18 Cao, V.V., Ronagh, H., Ashraf, M. and Baji, H. (2011), "A new damage index for reinforced concrete structures subjected to seismic loads", The First International Postgraduate Conference on Engineering, Designing and Developing the Built Environment for Sustainable Wellbeing -eddBE2011, The Queensland University of Technology, Queensland, Australia, 27-29 April 2011, 194-199.
19 Chen, Z. and Wei, J. (2012), "Correlation between ground motion parameters and lining damage indices for mountain tunnels", Natural Hazards. doi: 10.1007/s11069-012-0437-5   DOI
20 Choi, I.-K., Choun, Y.-S., Ahn, S.-M. and Seo, J.-M. (2008), "Probabilistic seismic risk analysis of CANDU containment structure for near-fault earthquakes", Nuclear Eng. Des., 238, 1382-1391.   DOI
21 Elenas, A. (2000), "Correlation between seismic acceleration parameters and overall structural damage indices of buildings", Soil Dyn. Earthq. Eng., 20, 93-100.   DOI
22 Ellingwood, B.R. (2001), "Earthquake risk assessment of building structures", Reliab. Eng. Syst. Saf., 74, 251-262.   DOI   ScienceOn
23 Galal, K. and Ghobarah, A. (2006), "Effect of near-fault earthquakes on North American nuclear design spectra", Nuclear Eng. Des., 236, 1928-1936.   DOI
24 Kalkan, E. and Kunnath, S.K. (2006), "Effects of fling step and forward directivity on seismic response of buildings", Earthq. spectra, 22(2), 367-390.   DOI
25 Galal, K. and Naimi, M. (2008), "Effect of soil conditions on the response of reinforced concrete tall structures to near fault earthquakes", Struct. Des. Tall Spec. Build., 17, 541-562.   DOI   ScienceOn
26 Ghosh, S., Datta, D. and Katakdhond, A.A. (2011), "Estimation of the Park-Ang damage index for planar multi-storey frames using equivalent single-degree systems", Eng. Struct., 33, 2509-2524.   DOI   ScienceOn
27 Hatzigeorgiou, G.D. (2010), "Behavior factors for nonlinear structures subjected to multiple near-fault earthquakes", Comput. Struct., 88, 309-321.   DOI   ScienceOn
28 Kent, D.C. and Park, R. (1971), "Flexural members with confined concrete", J. Struct. Div., 97(7), 1969-1990
29 Kim, T.-H., Lee, K.-M., Chung, Y.-S. and Shinb, H.M. (2005), "Seismic damage assessment of reinforced concrete bridge columns", Eng. Struct., 27, 576-592.   DOI   ScienceOn
30 Krishnan, S. (2007), "Case studies of damage to 19-storey irregular steel moment-frame buildings under near-source ground motion", Earthq. Eng. Struct. Dyn., 36, 861-885.   DOI
31 Liao, W.-I., Loh, C.-H. and Wan, S. (2001), "Earthquake responses of RC moment frames subjected to near-fault ground motions", Struct. Des.Tall Spec.Buil., 10, 219-29.   DOI
32 Lu, L.Y. and Lin, G.L. (2009), "Improvement of near-fault seismic isolation using a resettable variable stiffness damper", Eng. Struct., 31, 2097-2114.   DOI
33 Park, J., Towashiraporn, P., Craig, J.I. and Goodnod, B.J. (2009), "Seismic fragility analysis of low-rise unreinforced masonry structures", Eng. Struct., 31, 125-137.   DOI   ScienceOn
34 Manfredi, G., Polese, M. and Cosenza, E. (2003), "Cumulative demand of the earthquake ground motions in the near source", Earthq. Eng.Struct. Dyn., 32, 1853-1865.   DOI
35 Mavroeidis, G. and Papageorgiou, A. (2003), "A mathematical representation of near-fault ground motions", Bull. Seismol. Soc.Am., 93(3), 1099-1131.   DOI   ScienceOn
36 Mollaioli, F., Bruno, S., Decanini, L.D. and Panza, G.F. (2006), "Characterization of the dynamic response of structures to damaging pulse-type near-fault ground motions", Meccanica, 41, 23-46.   DOI
37 Park, R. and Paulay, T. (Eds.), (1975), Reinforced concrete structures. New York - London - Sydney - Toronto: John Wiley & Sons.
38 Park, R., Priestley, M.J.N. and Gill, W.D. (1982), "Ductility of square-confined concrete columns", J. Struct. Div., 108, 929-950.
39 Park, S.W., Ghasemi, H., Shen, J. and Yashinsky, M. (2004), "Simulation of the seismic performance of the Bolu Viaduct subjected to near-fault ground motions", Earthq. Eng. Struct. Dyn., 33, 1249-1270.   DOI
40 Park, Y.-J. and Ang, A.H.-S. (1985), "Mechanistic seismic damage model for reinforced concrete", J. Struct. Eng., 111(4), 722-739.   DOI   ScienceOn
41 PEER. (2011), PEER ground motion database. http://peer.berkeley.edu/peer_ground_motion_database.
42 Prakash, S.S. and Belarbi, A. (2010), "Towards damage-based design approach for RC bridge columns under combined loadings using damage index models", J. Earthq. Eng., 14(26), 363-389.   DOI   ScienceOn