• 제목/요약/키워드: Nonlinear systems

검색결과 4,508건 처리시간 0.031초

$H{\infty}$ CONTROL OF NONLINEAR SYSTEMS WITH NORM BOUNDED UNCERTAINTIES

  • Jang, S.;Araki, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.412-415
    • /
    • 1995
  • Previously obtained results of L$_{2}$-gain and H$_{\infty}$ control via state feedback of nonlinear systems are extended to a class of nonlinear system with uncertainties. The required information about the uncertainties is that the uncertainties are bounded in Euclidian norm by known functions of the system state. The conditions are characterized in terms of the corresponding Hamilton-Jacobi equations or inequalities (HJEI). An algorithm for finding an approximate local solution of Hamilton-Jacobi equation is given. This results and algorithm are illustrated on a numerical example..

  • PDF

비최소위상 비선형 시스템의 출력궤환 안정화 (Output Feedback Stabilization of Non-Minimum phase Nonlinear Systems)

  • 조남훈
    • 제어로봇시스템학회논문지
    • /
    • 제9권12호
    • /
    • pp.977-983
    • /
    • 2003
  • An output feedback stabilizing controller far non-minimum phase nonlinear systems is presented. We first perform the standard input-output linearization of the system and then transform the zero dynamics into a special normal form in which the antistable part is not affected by the stable part and the antistable part is given in approximately linear form. Under the assumption that the nonlinear system satisfies the observability rank condition, we can design an observer f3r the extended system that is made of the augmentation of a chain of integrators. The proposed output feedback stabilizing controller can then be designed by combining the observer and the state feedback controller.

MIMO 비선형 시스템의 로컬 관측기 설계 (Local Observer Design for MIMO Nonlinear Systems)

  • 이성렬
    • 전자공학회논문지SC
    • /
    • 제45권1호
    • /
    • pp.9-14
    • /
    • 2008
  • 본 논문에서는 다입력 다출력 비선형 시스템에 대한 관측기 설계 방법을 제안한다. 먼저 관측기 설계를 위한 삼각구조를 갖는 비선형 시스템을 정의한다. 또한 제안한 관측기의 안정도를 증명하는데 중요한 역할을 하는 가관측성 행렬을 다입력 다출력 시스템으로 확장한다. 확장된 가관측성 행렬을 이용하여 상태변수와 시스템 입력의 유계 조건하에서 제안한 관측기가 로컬 영역에서 지수 함수적 수렴성을 가짐을 증명한다. 마지막으로 제안한 결과의 유효성을 증명하기 위하여 모의실험 예제를 제공한다.

Indirect Adaptive Fuzzy Sliding Mode Control for Nonaffine Nonlinear Systems

  • Seo, Sam-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권2호
    • /
    • pp.145-150
    • /
    • 2005
  • We proposed the indirect adaptive fuzzy model based sliding mode controller to control nonaffine nonlinear systems. Takagi-Sugano fuzzy system is used to represent the nonaffine nonlinear system and then inverted to design the controller at each sampling time. Also sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. The proposed controller and adaptive laws guarantee that the closed-loop system is stable in the sense of Lyapunov and the output tracks a desired trajectory asymptotically.

비선형 포화시스템 제어에 관한 안정성 연구 (A Study on the Stability of Control for Nonlinear Saturated Systems)

  • 정상화;오용훈;류신호;김상석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.208-208
    • /
    • 2000
  • In realistic control systems, the nonlinear salutation attributes of the control actuator due to physical limitations should be taken into account. This nonlinear saturation of actuators may cause not only deterioration of the control performance but also a large overshoot during start-up and shut-down. As the overshoot increases, the system may become oscillatory unstable. In this paper, the supervisor implementation which guarantees good performance lot saturation operation and prevents reset wind-up is presented. Moreover, the sufficient conditions of the stability for saturated systems using supervisory control with a dynamic controller are provided in the discrete-time domain. A numerical example is illustrated to depict the efficiency of supervisory control for a typical saturated production-distribution system controlled by a discrete-time dynamic controller and to validate basic results by simulation.

  • PDF

지능형 디지털 재설계 기법을 이용한 비선형 전력 계통의 강인 퍼지 부하 주파수 제어 (Robust Fuzzy Load-Frequency Control of Nonlinear Power Systems Using Intelligent Digital Redesign Technique)

  • 이남수;이연우;전상원;주영훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.142-145
    • /
    • 2000
  • A new robust load-frequency control (LFC) methodology is proposed for nonlinear power systems with the valve position limits of the governor in the presence of parametric uncertainties. The Takagi-Sugeno (TS) fuzzy model is adopted for fuzzy modeling of the nonlinear power system. A sufficient condition of the robust stability is presented in the sense of Lyapunov for the TS fuzzy model with parametric uncertainties. The intelligent digital redesign technique for the uncertain nonlinear power system is also studied. The effectiveness of the proposed robust fuzzy LFC controller design method is demonstrated through a numerical simulation.

  • PDF

고속월쉬변환에 의한 비선형계의 적응형 최적제어 (Adaptive Optimal Control of Nonlinear Systems via Fast Walsh Transform)

  • 유영식;임윤식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 정기총회 및 학술대회 전문대학교육위원
    • /
    • pp.65-68
    • /
    • 2008
  • This paper presents the new adaptive optimal scheme for the nonlinear systems, which is based on the Picard's iterative approximation and Fast Walsh transform. It is well known that the Walsh function approach method is very difficult to apply for the analysis and optimal control of nonlinear systems. However, these problems can be easily solved by the improvement of the previous adaptive optimal scheme. The proposed method is easily applicable to the analysis and optimal control of nonlinear systems.

  • PDF

Measurement of Nonlinear Time-variant Source Characteristics of Intake and Exhaust Systems in Fluid Machines

  • Jang Seung-Ho;Ih Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • 제24권3E호
    • /
    • pp.87-89
    • /
    • 2005
  • The acoustical sources of intake and exhaust systems in fluid machines are often characterized by the source impedance and strength using linear frequency-domain modeling. In the case of the sources which are nonlinear and time-variant, however, the source parameters were sometimes incorrectly obtained. In this paper, the source model and direct measurement technique are modified in order to evaluate the effect due to nonlinear and periodically time-varying source character as well as the linear property of the reflectivity of in-duct fluid machine source. With a priori known kinematical information of the source, the types of nonlinear time-variant terms can be presumed by a simple physical model, in which there is practically no restriction on the form of the model. The concept of source impedance can be extendable by introducing the linear frequency response function for each nonlinear or time-variant input. Extending the conventional method and adapting the reverse MISO technique, it is possible to develop a direct method that can deal with the nonlinear time-variant source parameters. The proposed direct method has a novel feature that there is no restriction on the probability or spectral natures of the excited sound pressure data. The present method is verified by the simulated measurements for simplified fluid machines. It is thought that the proposed method would be useful in predicting the insertion loss or the radiated sound level from intake or exhaust systems.

당뇨병환자와 정상인의 말초혈관혈류의 비선형적 운동계 분석에 대한 연구 (A Study of the Analysis of Characteristics of Nonlinear Dynamic System on Blood-Flow of Peripheral Blood-Vessel between Diabetic Patients and Control Subjects)

  • 김덕훈;최준영;이상훈;고한우;남상희
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.363-367
    • /
    • 1996
  • In general, the physiological systems have shown nonlinear complex phenomena. This study analyzes nonlinear characteristics of the flow of peripheral blood vessel dynamics in physiological systems using chaos theory. We performed this study by means of several quantity methods and power spectrum. The quantity methods are a phase space reconstruction and a poincare's map. And the power spectrum method is a conventional linear analysis. Experimental data have been acquired from examining 10 diabetic patients, and 10 control subjects in initial stable state. In acquisition experminetal data, we anlysized the differences of nonlinear characteristics between diabetic group and control group. The results of quality analysis methods showed the flow of peripheral blood vessel had the nonlinear and chaotic characteristics, screening a strange attractor on reconstructed phase space. In conclusion, the flow dynamics of peripheral blood vessel had a chaotic behavior of nonlinear dynamic systems, dynamic system, and differences of characteristic of nonlinear dynamic system.

  • PDF

Semi-active bounded optimal control of uncertain nonlinear coupling vehicle system with rotatable inclined supports and MR damper under random road excitation

  • Ying, Z.G.;Yan, G.F.;Ni, Y.Q.
    • Coupled systems mechanics
    • /
    • 제7권6호
    • /
    • pp.707-729
    • /
    • 2018
  • The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems under random road excitations is an important research subject, and the boundedness of MR dampers and the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of motion of the coupling torsion-bar suspension vehicle system with MR damper under random road excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. The dynamical programming equation is derived based on the stochastic dynamical programming principle firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear stochastic system, the minimax dynamical programming equation is derived based on the minimax stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active bounded parametric optimal control are obtained from the programming equation under the bounded disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed control is illustrated with numerical results. The control performances for the vehicle system with different bounds of MR damper under different vehicle speeds and random road excitations are discussed.