• 제목/요약/키워드: Nonlinear switching control

검색결과 185건 처리시간 0.027초

정지/서행 순항 제어 시스템을 위한 쓰로틀/브레이크 제어기법 (A Throttle/Brake Control Law for Stop and Go Cruise Control System)

  • 홍진호;이경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.641-646
    • /
    • 2000
  • This paper addresses a throttle/brake control law for stop and go cruise control systems which make the vehicle remain at a safe distance from a preceding vehicle according to the driver's preference, automatically slow down and come to a full stop behind a preceding vehicle. The uncertainties of vehicle model have been considered in the design of the control law. The effect of throttle/brake control has been investigated via simulations. The simulations were performed using a complete nonlinear vehicle model. The results indicate that the proposed throttle/brake control law can provide the stop and go cruise control system with a good distance tracking performance.

  • PDF

불확실한 비선형 시스템의 퍼지 슬라이딩모드 제어기 설계 (Design of a Fuzzy-Sliding Mode Controller for an Uncertain Nonlinear System)

  • 허성회;박귀태;김권호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2290-2292
    • /
    • 2000
  • Robustness characteristics to the modelling imprecision and some disturbances could be achieved in sliding mode control. However, there are drawbacks such as discontinuous control and chattering. Recently, many researches have been developing to solve such the problems. In sliding mode control, overall control input could be divided into two parts which are equivalent control input and sliding mode control input. Sliding mode control input is a function of the switching surfaces and can be designed with their linear combinations. In this paper, the sliding mode control input is designed by TSK fuzzy model. The proposed method gives the continuous sliding control input and reject the chattering phenomenon.

  • PDF

비 간섭 슬라이딩 모드 기법을 이용한 로봇 매니퓰레이터의 궤도제어 (Trajectory control of a manipulator by the decoupling sliding mode method)

  • 남택근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.842-848
    • /
    • 2005
  • The decoupling control using state feedback was once intensively studied during 1960's by many researchers. However, this control scheme was sensitive to the disturbance and Parameter variations. SMC(sliding mode control) is known as a robust control methodology to overcome such a disturbance. In this paper. the decoupling control by means of SM(sliding mode) for a trajectory control of a two-degrees-of- freedom manipulator was discussed. The position and velocity of manipulator tip were adopted to compose a nonlinear error functions. The reference inputs of the controller can be decided by switching function combined with the desired position and velocity. Simulation result is provided to verify the effectiveness of the proposed control scheme.

슬라이딩 모드 제어기를 응용한 선삭공정 절삭력 제어 (Cutting Force Regulation in Turning Using Sliding Mode Control)

  • 박영빈;김종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.605-609
    • /
    • 1996
  • Continuous sliding mode control is applied to turning process for cutting force regulation. The highest feedrate compatible with the allowable cutting force is applied in rough cutting process such that maximum productivity is ensured and tool breakage is avoided. The programmed feedrate is overridden after the control algorithm is carried out. However, most CNC lathe manufacturers offer limited number of data bits far feedrate override, thus resulting in nonlinear behavior of the machine tools. Such nonlinearity brings “quantized” effect, and the optimal faedrate is rounded off before being fed into the CNC system. To compensate for this problem, continuous sliding mode control is applied. Conventional switching control law at a sliding surface is replaced by a smooth control interpolation in a selected boundary layer to avoid the excitation of high-frequency dynamics. Simulation results are presented in comparison with those obtained by applying adaptive control.

  • PDF

컨버터의 폐루프 식별 및 제어기 설계 (Closed-loop Identification and Controller Design for a Converter)

  • 윤경한;임연수;김려화;김재진;김영철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1632-1633
    • /
    • 2007
  • This paper presents a new method of designing digital controller based on closed-loop identification of a pulse width modulation (PWM) converter system. We consider the control system structure which is composed of both current control loop and voltage control loop. The current controller can be designed independently of voltage loop. Whereas voltage controller can not do easily due to the PWM switching component which is nonlinear in nature. Furthermore, the control objective of inner loop is to track the sine wave of 60 Hz, but the outer loop shall maintain the constant DC voltage irrespective to load change. To systematically design outer loop controller, we propose a method finding linear approximate model of the nonlinear inner loop part including current controller by closed loop identification. Based on the identified model, we show that a simple digital voltage controller can be directly designed and it has good performance.

  • PDF

Davidenko법에 의한 시간최적 제어문제의 수치해석해 (The Numerical Solution of Time-Optimal Control Problems by Davidenoko's Method)

  • 윤중선
    • 한국정밀공학회지
    • /
    • 제12권5호
    • /
    • pp.57-68
    • /
    • 1995
  • A general procedure for the numerical solution of coupled, nonlinear, differential two-point boundary-value problems, solutions of which are crucial to the controller design, has been developed and demonstrated. A fixed-end-points, free-terminal-time, optimal-control problem, which is derived from Pontryagin's Maximum Principle, is solved by an extension of Davidenko's method, a differential form of Newton's method, for algebraic root finding. By a discretization process like finite differences, the differential equations are converted to a nonlinear algebraic system. Davidenko's method reconverts this into a pseudo-time-dependent set of implicitly coupled ODEs suitable for solution by modern, high-performance solvers. Another important advantage of Davidenko's method related to the time-optimal problem is that the terminal time can be computed by treating this unkown as an additional variable and sup- plying the Hamiltonian at the terminal time as an additional equation. Davidenko's method uas used to produce optimal trajectories of a single-degree-of-freedom problem. This numerical method provides switching times for open-loop control, minimized terminal time and optimal input torque sequences. This numerical technique could easily be adapted to the multi-point boundary-value problems.

  • PDF

3상 UPS용 인버터의 강인한 비간섭 디지털제어 (Robust Decoupling Digital Control of Three-Phase Inverter for UPS)

  • 박지호;허태원;신동렬;노태균;우정인
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권4호
    • /
    • pp.246-255
    • /
    • 2000
  • This paper deals with a novel full digital control method of the three-phase PWM inverter for UPS. The voltage and current of output filter capacitor as state variables are the feedback control input. In addition, a double deadbeat control consisting of a d-q current minor loop and a d-q voltage major loop, both with precise decoupling, have been developed. The switching pulse width modulation based on SVM is adopted so that the capacitor current should be exactly equal to its reference current. In order to compensate the calculation time delay, the predictive control is achieved by the current·voltage observer. The load prediction is used to compensate the load disturbance by disturbance observer with deadbeat response. The experimental results show that the proposed system offers an output voltage with THD less than 2% at a full nonlinear load.

  • PDF

스윗치드 리럭탄스 전동기의 쵸핑여자 및 스윗칭여자특성 (CHOPPING AND SWITCHING EXCITATION OF A SWITCHED RELUCTANCE MOTOR)

  • 권영안
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.1013-1015
    • /
    • 1993
  • The switched reluctance motor is excited and controlled by two kinds of excitation; chopped excitation and switched excitation. The former produces additional inverter losses, and onuses drive control to be complicated. The limit of chopping frequency reduces a range of operating speed and torque. This paper examines chopped excitation and switched excitation in a nonlinear switched reluctance motor. The result indicates switched excitation can be satisfactorily applied to the full operating range, and furthermore indicates the improved efficiency.

  • PDF

차량 능동현가시스템에 대한 강인 제어 해석 (Analysis of an Robust Control for a Vehicle Active Suspension System)

  • 김주용
    • 유공압시스템학회논문집
    • /
    • 제7권3호
    • /
    • pp.20-27
    • /
    • 2010
  • A vehicle suspension system performs two functions, the ride quality and the stability, which conflict with each other. An active suspension system has an external energy source, from which energy is always supplied to the system for continuous control of vehicle motion. Therefore, an active suspension system can have even more improved performance. Some control laws have been proposed for active suspension system, but in this paper, an optimal variable structure control(VSC) is proposed. The VSC method is well suited for a class of nonlinear system and can address the robustness issues to constant modelling errors and disturbances. This paper develops an optimal VSC controller and compares its performance to those of a passive suspension system and an active suspension system with an optimal controller. The transient and frequency responses are analyzed respectively.

  • PDF

Modified adaptive complementary sliding mode control for the longitudinal motion stabilization of the fully-submerged hydrofoil craft

  • Liu, Sheng;Niu, Hongmin;Zhang, Lanyong;Xu, Changkui
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.584-596
    • /
    • 2019
  • This paper presents a Modified Adaptive Complementary Sliding Mode Control (MACSMC) system for the longitudinal motion control of the Fully-Submerged Hydrofoil Craft (FSHC) in the presence of time varying disturbance and uncertain perturbations. The nonlinear disturbance observer is designed with less conservatism that only boundedness of the derivative of the disturbance is required. Then, a complementary sliding mode control system combined with adaptive law is designed to reduce the bound of stabilization error with fast convergence. In particularly, the modified complementary sliding mode surface which contains the estimation of the disturbance can reduce the switching gain and retain the normal performance of the system. Moreover, a hyperbolic tangent function contained in the control law is utilized to attenuate the chattering of the actuator. The global asymptotic stability of the closed-loop system is demonstrated utilizing the Lyapunov stability theory. Ultimately, the simulation results show the effectiveness of the proposed approach.