• Title/Summary/Keyword: Nonlinear stiffness

Search Result 1,093, Processing Time 0.032 seconds

Nonlinear Analysis of Reinforced and Prestressed Concrete Shells Using Layered Elements with Drilling DOF

  • Kim Tae-Hoon;Choi Jung-Ho;Kim Woon-Hak;Shin Hyun Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.645-654
    • /
    • 2005
  • This paper presents a nonlinear finite element procedure for the analysis of reinforced and prestressed concrete shells using the four-node quadrilateral flat shell element with drilling rotational stiffness. A layered approach is used to discretize, through the thickness, the behavior of concrete, reinforcing bars and tendons. Using the smeared-crack method, cracked concrete is treated as an orthotropic nonlinear material. The steel reinforcement and tendon are assumed to be in a uni-axial stress state and to be smeared in a layer. The constitutive models, which cover the loading, unloading, and reloading paths, and the developed finite element procedure predicts with reasonable accuracy the behavior of reinforced and prestressed concrete shells subjected to different types of loading. The proposed numerical method fur nonlinear analysis of reinforced and prestressed concrete shells is verified by comparison with reliable experimental results.

Nonlinear Dynamic Analysis of Helical Gears with Backlash by Torque Fluctuation (토크 변동에 의한 백래시를 가진 헬리컬 기어의 비선형 동적 해석)

  • Park, Chan-IL
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.677-684
    • /
    • 2010
  • Backlashes of gears provide gears for good lubrication and for removal of the interference between teeth by the wear and manufacturing errors. The backlash is the strong nonlinear factor to gears. This study deals with nonlinear modeling of helical gears with backlash. Excitation of helical gears comes from torque variation, the tooth surface error, and the periodical change of mesh stiffness. To study the effect of torque fluctuation, equation of motion for the single degree of freedom torsional model of helical gears with the periodical change of mesh stiffness and the backlash was derived. The Newmark beta method and the Newton-Raphson method were used to obtain the nonlinear behaviors of mesh forces of helical gears. All excitation frequencies initially caused the tooth separation and single-sided impacts of the gear pair and eventually led to the normal tooth contact. However, some special excitation frequencies caused the single-sided impacts in the entire time as well as the initial time. Damping increase reduced the duration of single-sided impacts, and the backlash increase caused those in the entire time domain.

Acoustic Nonlinear Characteristics of Ultrasonic Wave Reflected at Contact Interfaces (접촉계면 반사 초음파의 음향 비선형 특성)

  • Park, Byung-Jun;Lee, Tae-Hun;Kim, Chung-Seok;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.40-46
    • /
    • 2011
  • In the field application of the conventional acoustic nonlinear technique using through transmission of bulk waves to evaluate the contact acoustic nonlinearity(CAN) in solid-solid contact interfaces like as in the closed crack, it has difficulty to access inner position for attaching the pulsing or receiving transducer. In the present study, a new reflection technique has been suggested to measure the acoustic nonlinearity in solid-solid contact interfaces, which uses both of pulsing and receiving transducers on the same side of target and so that it will be very useful for the field application. For this, based on the linear and the nonlinear contact stiffness estimated by the power-model of the contacting pressure, the nonlinear parameter of the reflected ultrasonic wave at the interfaces has been theoretically calculated. Experimental results in contact interfaces of A1606l-T6 alloy specimens with loading pressure showed good agreement with the theoretical predictions, which proves the validity of the suggested reflection mode technique.

Nonlinear P-Δ analysis of steel frames with semi-rigid connections

  • Valipour, Hamid R.;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.14 no.1
    • /
    • pp.1-20
    • /
    • 2013
  • This paper presents the formulation for a novel force-based 1-D compound-element that captures both material and second order P-${\Delta}$ nonlinearities in steel frames. At the nodal points, the element is attached to nonlinear rotational and a translational springs which represent the flexural and axial stiffness of the connections respectively. By decomposing the total strain in the material as well as the generalised displacements of the flexible connections to their elastic and inelastic components, a secant solution strategy based on a direct iterative scheme is introduced and the corresponding solution strategy is outlined. The strain and slope of the deformed element are assumed to be small; however the equilibrium equations are satisfied for the deformed element taking account of P-${\Delta}$ effects. The formulation accuracy and efficiency is verified by some numerical examples on the nonlinear static, cyclic and dynamic analysis of steel frames.

Nonlinear Analysis of Large Concrete Panel Structures subjected to Cyclic Loads (반복하중을 받는 대형 콘크리트 판구조의 비선형 해석)

  • 정봉오;서수연;이원호;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.113-120
    • /
    • 1994
  • Large Concrete Panel Structures behave quite differently from frame or monolithic shear wall structures because of the weakness of Joint in stiffness and strength. The joint experiences large deformation such as shear-slip in vertical and horizontal joint and rocking and crushing in horizontal joint because of localized stress concentration, but the wall panels behave elastically under cyclic loads. In order to describe the nonlinear behavior of the joint in the analysis of PC structures, different analysis technique from that of RC structures is needed. In this paper, for analysis of large concrete panel subassemblage subjected to cyclic loads, the wall panels are idealized by elastic finite elements, and the joints by nonlinear spring elements with various load-deflection relationship. The analytical results are compared with the experimental results on the strength, stiffness, energy dissipation and lateral drift, and the effectiveness of this computer analysis modelling technique is checked.

  • PDF

Advanced Geometrically Nonlinear FE Analysis of PSC Shell Structures (프리스트레스트 콘크리트 첼 구조물의 개선된 기하비선형 유한요소해석)

  • Oh Byung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.195-200
    • /
    • 2001
  • Numerical procedures for the geometrically nonlinear finite element analysis of prestressed concrete shell structures under tendon-induced nonconservative loads have been presented. The equivalent load approach is employed to realize the effect of prestressing tendon. In this study, the tendon-induced nonconservative loads are rigorously formulated into the load correction stiffness matrix(LCSM) taking the characteristics of Present shell element into account. Also, improved nonlinear formulations of a shell element are used by including second order rotations in the displacement field. Numerical example shows that beneficial effect on the convergence behavior can be obtained by the realistic evaluation of tangent stiffness matrix according to the present approaches.

  • PDF

Nonlinear modeling of flat-plate structures using grid beam elements

  • Tian, Ying;Chen, Jianwei;Said, Aly;Zhao, Jian
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.489-505
    • /
    • 2012
  • This paper presents a simplified grid beam model for simulating the nonlinear response of reinforced concrete flat-plate structures. The beam elements are defined with nonlinear behavior for bending moment and torsion. The flexural stiffness and torsional strength of the beam elements are defined based on experimental data to implicitly account for slab two-way bending effects. A failure criterion that considers the interaction between the punching strength and slab flexural behavior is incorporated in the model. The effects of bond-slip of slab reinforcement on connection stiffness are examined. The proposed grid beam model is validated by simulating large-scale tests of slab-column connections subjected to concentric gravity loading and unbalanced moment. This study also determines the critical parameters for a hysteretic model used to simulate flat-plates subjected to cyclic lateral loading.

A Study on the Nonlinear Behavior of Plate under Thrust (면내압축하중을 받는 선체판의 비선형거동에 관한 연구)

  • 고재용
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1996.09a
    • /
    • pp.95-110
    • /
    • 1996
  • High Tensile Steel enables to reduce the plate thickness comparing to the case when Mild Steel is used. From the economical view point this is very preferable since the reduction in the hull weight. However to use the High Tensile Steel effectively the plate thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. If the inplane stiffness of the plating decreases due to buckling, buckling may be necessary. If the inplane stiffness of the plating decreases due to buckling the flexural rigidity of the cross section of a ship's hull also decreases. this may lead to excessive deflection of the hull girder under longitudinal bending. In these cases a precise estimation of plate's behavior after buckling is necessary and nonlinear analysis of isolated and stiffened plates is required for structural system analysis. In this connection this paper discusses nonlinear behaviour of thin plate under thrust. Based on the analytical method elastic large deflection analysis of isolated plate is perform and simple expression are derived to evaluate the inplane rigidity of plates subjected to uniaxial compression.

  • PDF

Parameter Identifieation of Nonlinear Structure (비선형 구조물의 매개변수 규명)

  • 김우영;황원걸;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.363-368
    • /
    • 1993
  • Hilbert Transform has been used for detection of nonlinearity in modal analysis. HTD(Hilbert Transform Describers) are used to quantify and identify nonlinearity. Mottershead and Stanway method for identification of N-th power velocity nonlinear damping are extended to P-th power displacement stiffness, N-th power velocity damping and dry friction. Time domain and frequency domain data are used and HTD and Mottershead methods are combined for identification of nonlinear parameters in this paper. Computer simulations and experimental results are shown to verify nonlinear structure identification methods.

  • PDF

Nonlinear Analysis of Gear Driving System due to Misalignment (정렬불량에 의한 기어구동계 비선형 해석)

  • Lee, B. H.;Park, Y. S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.311.2-311
    • /
    • 2002
  • Even through the problem of misalignment is of great importance, not much work has been reported in the literature on the effect of misalignment on the vibrations of the gear-bearing systems. Therefore, the nonlinear dynamic characteristics of the gear driving system due to misalignment are investigated in this work. Transmission error for helical gear and bearing nonlinear stiffness is calculated. (omitted)

  • PDF