• Title/Summary/Keyword: Nonlinear stiffness

Search Result 1,090, Processing Time 0.022 seconds

Development of Airframe Structure for Disaster and Public Safety Multicopter UAV (재난치안용 멀티콥터 무인기 기체구조 개발)

  • Shin, Jeong Woo;Lee, Seunggyu;Noh, Jeong Ho
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.69-77
    • /
    • 2020
  • Airframe structure development of the 35 kg class 'Disaster and Public Safety Multicopter' UAV is described in this paper. To reduce the airframe weight, T-700 grade CFRP composite material was used, and the fuselage was designed with the semi-monocoque structure and plate installed with the control and communication devices designed in a sandwich structure. The specimen tests for the laminated plate and pipe were conducted to verify the strength and stiffness of the designed parts. The stacking sequence of composite materials was determined by the static strength and vibration analysis, and landing gear strut was designed by the nonlinear analysis with decent speed and ground clearance requirements. The static strength test was performed to evaluate the structural integrity and to verify the landing gear behavior.

Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.21-31
    • /
    • 2017
  • To control the stochastic vibration of a vibration-sensitive instrument supported on a beam, the beam is designed as a sandwich structure with magneto-rheological visco-elastomer (MRVE) core. The MRVE has dynamic properties such as stiffness and damping adjustable by applied magnetic fields. To achieve better vibration control effectiveness, the optimal bounded parametric control for the MRVE sandwich beam with supported mass under stochastic and deterministic support motion excitations is proposed, and the stochastic and shock vibration suppression capability of the optimally controlled beam with multi-mode coupling is studied. The dynamic behavior of MRVE core is described by the visco-elastic Kelvin-Voigt model with a controllable parameter dependent on applied magnetic fields, and the parameter is considered as an active bounded control. The partial differential equations for horizontal and vertical coupling motions of the sandwich beam are obtained and converted into the multi-mode coupling vibration equations with the bounded nonlinear parametric control according to the Galerkin method. The vibration equations and corresponding performance index construct the optimal bounded parametric control problem. Then the dynamical programming equation for the control problem is derived based on the dynamical programming principle. The optimal bounded parametric control law is obtained by solving the programming equation with the bounded control constraint. The controlled vibration responses of the MRVE sandwich beam under stochastic and shock excitations are obtained by substituting the optimal bounded control into the vibration equations and solving them. The further remarkable vibration suppression capability of the optimal bounded control compared with the passive control and the influence of the control parameters on the stochastic vibration suppression effectiveness are illustrated with numerical results. The proposed optimal bounded parametric control strategy is applicable to smart visco-elastic composite structures under deterministic and stochastic excitations for improving vibration control effectiveness.

Experimental and numerical investigation of reinforced concrete beams containing vertical openings

  • Parol, Jafarali;Ben-Nakhi, Ammar;Al-Sanad, Shaikha;Al-Qazweeni, Jamal;Al-Duaij, Hamad J.;Kamal, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.383-393
    • /
    • 2019
  • Horizontal openings in reinforced concrete (RC) beams are quite often used to accommodate service pipelines. Several research papers are available in the literature describing their effect. RC beams with vertical openings are commonly used to accommodate service lines in residential buildings in Kuwait. However, there are lack of design guidelines and best practices reported in the literature for RC beams with vertical openings, whereas the detailed guidelines are available for beams with horizontal openings. In the present paper, laboratory experiments are conducted on nine RC beams with and without vertical openings. Parametric study has been carried out using nonlinear finite element analysis (FEA) with changes in the diameter of the opening, various positions of the opening along the length and width of the beam, edge distance, etc. 50 finite element simulations were conducted. The FEA results are verified using the results from the laboratory experiments. The study showed that the load carrying capacity of the beam is reduced by 20% for the RC beam with vertical openings placed near the center of the beam compared to a solid beam without an opening. Significant reduction in load carrying capacity is observed for beams with an opening near the support (${\approx}15%$). The overall stiffness of the beam, crack pattern and failure modes were not affected due to the presence of the vertical opening. Furthermore, an artificial neural network (ANN) analysis is carried out using the FEA generated data. The results and observations from the ANN and FEA are in good agreement with experimental results.

Cyclic testing of scaled three-story special concentrically braced frame with strongback column

  • Chen, Chui-Hsin;Tsai, Yi-Rung;Tang, Yao
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.163-173
    • /
    • 2019
  • For Special Concentrically Braced Frame (SCBF), it is common that the damage concentrates at a certain story instead of spreading over all stories. Once the damage occurs, the soft-story mechanism is likely to take place and possibly to result in the failure of the whole system with more damage accumulation. In this study, we use a strongback column which is an additional structural component extending along the height of the building, to redistribute the excessive deformation of SCBF and activate more structural members to dissipate energy and thus avoid damage concentration and improve the seismic performance of SCBF. We tested one-third-scaled, three-story, double-story X SCBF specimens with static cyclic loading procedure. Three specimens, namely S73, S42 and S0, which represent different combinations of stiffness and strength factors ${\alpha}$ and ${\beta}$ for the strongback columns, were designed based on results of numerical simulations. Specimens S73 and S42 were the specimens with the strongback columns, and S0 is the specimen without the strongback column. Test results show that the deformation distribution of Specimen S73 is more uniform and more brace members in three stories perform nonlinearly. Comparing Drift Concentration Factor (DCF), we can observe 29% and 11% improvement in Specimen S73 and S42, respectively. This improvement increases the nonlinear demand of the third-story braces and reduces that of the first-story braces where the demand used to be excessive, and, therefore, postpones the rupture of the first-story braces and enhances the ductility and energy dissipation capacity of the whole SCBF system.

Numerical finite element study of a new perforated steel plate shear wall under cyclic loading

  • Farrokhi, Ali-Akbar;Rahimi, Sepideh;Beygi, Morteza Hosseinali;Hoseinzadeh, Mohamad
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.539-548
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are one of the most important and widely used lateral load-bearing systems. The reason for this is easier execution than reinforced concrete (RC) shear walls, faster construction time, and lower final weight of the structure. However, the main drawback of SPSWs is premature buckling in low drift ratios, which affects the energy absorption capacity and global performance of the system. To address this problem, two groups of SPSWs under cyclic loading were investigated using the finite element method (FEM). In the first group, several series of circular rings have been used and in the second group, a new type of SPSW with concentric circular rings (CCRs) has been introduced. Numerous parameters include in yield stress of steel plate wall materials, steel panel thickness, and ring width were considered in nonlinear static analysis. At first, a three-dimensional (3D) numerical model was validated using three sets of laboratory SPSWs and the difference in results between numerical models and experimental specimens was less than 5% in all cases. The results of numerical models revealed that the full SPSW undergoes shear buckling at a drift ratio of 0.2% and its hysteresis behavior has a pinching in the middle part of load-drift ratio curve. Whereas, in the two categories of proposed SPSWs, the hysteresis behavior is complete and stable, and in most cases no capacity degradation of up to 6% drift ratio has been observed. Also, in most numerical models, the tangential stiffness remains almost constant in each cycle. Finally, for the innovative SPSW, a relationship was suggested to determine the shear capacity of the proposed steel wall relative to the wall slenderness coefficient.

Characteristics of Static Buckling Load of the Hexagonal Spatial Truss Models using Timber (목재를 이용한 육각형 공간 트러스 모델의 정적좌굴하중 특성)

  • Ha, Hyeonju;Shon, Sudeok;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.25-32
    • /
    • 2022
  • In this paper, the instability of the domed spatial truss structure using wood and the characteristics of the buckling critical load were studied. Hexagonal space truss was adopted as the model to be analyzed, and two boundary conditions were considered. In the first case, the deformation of the inclined member is only considered, and in the second case, the deformation of the horizontal member is also considered. The materials of the model adopted in this paper are steel and timbers, and the considered timbers are spruce, pine, and larch. Here, the inelastic properties of the material are not considered. The instability of the target structure was observed through non-linear incremental analysis, and the buckling critical load was calculated through the singularities and eigenvalues of the tangential stiffness matrix at each incremental step. From the analysis results, in the example of the boundary condition considering only the inclined member, the critical buckling load was lower when using timber than when using steel, and the critical buckling load was determined according to the modulus of elasticity of timber. In the case of boundary conditions considering the effect of the horizontal member, using a mixture of steel and timber case had a lower buckling critical load than the steel case. But, the result showed that it was more effective in structural stability than only timber was used.

Modeling of heated concrete-filled steel tubes with steel fiber and tire rubber under axial compression

  • Sabetifar, Hassan;Nematzadeh, Mahdi;Gholampour, Aliakbar
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.15-29
    • /
    • 2022
  • Concrete-filled steel tubes (CFSTs) are increasingly used as composite sections in structures owing to their excellent load bearing capacity. Therefore, predicting the mechanical behavior of CFST sections under axial compression loading is vital for design purposes. This paper presents the first study on the nonlinear analysis of heated CFSTs with high-strength concrete core containing steel fiber and waste tire rubber under axial compression loading. CFSTs had steel fibers with 0, 1, and 1.5% volume fractions and 0, 5, and 10% rubber particles as sand alternative material. They were subjected to 20, 250, 500, and 750℃ temperatures. Using flow rule and analytical analysis, a model is developed to predict the load bearing capacity of steel tube, and hoop strain-axial strain relationship, and axial stress-volumetric strain relationship of CFSTs. An elastic-plastic analysis method is applied to determine the axial and hoop stresses of the steel tube, considering elastic, yield, and strain hardening stages of steel in its stress-strain curve. The axial stress in the concrete core is determined as the difference between the total experimental axial stress and the axial stress of steel tube obtained from modeling. The results show that steel tube in CFSTs under 750℃ exhibits a higher load bearing contribution compared to those under 20, 250, and 500℃. It is also found that the ratio of load bearing capacity of steel tube at peak point to the load bearing capacity of CFST at peak load is noticeable such that this ratio is in the ranges of 0.21-0.33 and 0.31-0.38 for the CFST specimens with a steel tube thickness of 2 and 3.5 mm, respectively. In addition, after the steel tube yielding, the load bearing capacity of the tube decreases due to the reduction of its axial stiffness and the increase of hoop strain rate, which is in the range of about 20 to 40%.

Stress Distribution Characteristics of Surrounding Reinforcing Bars due to Reinforcing Bar Cutting in Penetration (관통부의 철근 절단으로 인한 주변 철근의 응력분포 특성)

  • Chung, Chul-Hun;Moon, Il Hwan;Lee, Jungwhee;Song, Jae Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.775-786
    • /
    • 2022
  • In the plant structures including nuclear power plants, penetrations are frequently installed in walls and slabs to reinforce facilities during operation, and reinforcing bars are sometimes cut off during concrete coring. Since these penetrations are not considered at the design or construction stage, cutting of reinforcing bar during opening installation is actually damage to the structure, structural integrity evaluation considering the stress transition range or effective width around the new penetration is necessary. In this study, various nonlinear analyses and static loading experiments are performed to evaluate the effect of reinforcing bar cutting that occurs when a penetration is newly installed in the shear wall of wall-type building of operating nuclear power plant. In addition, the decrease in wall stiffness due to the installed new penetration and cutting of reinforcing bars is evaluated and the stress and strain distributions of rebars around penetration are also measured.

Study on Deriving the Buckling Knockdown Factor of a Common Bulkhead Propellant Tank (공통격벽 추진제 탱크 구조의 좌굴 Knockdown Factor 도출 연구)

  • Lee, Sook;Son, Taek-joon;Choi, Sang-Min;Bae, Jin-Hyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.10-21
    • /
    • 2022
  • The propellant tank, which is a space launch vehicle structure, must have structural integrity as various static and dynamic loads are applied during ground transportation, launch standby, take-off and flight processes. Because of these characteristics, the propellant tank cylinder, the structural object of this study, has a thin thickness, so buckling due to compressive load is considered important in the cylinder design. However, the existing buckling design standards such as NASA and Europe are fairly conservative and do not reflect the latest design and manufacturing technologies. In this study, nonlinear buckling analysis is performed using various analysis models that reflect initial defects, and a method for establishing new buckling design standards for cylinder structures is presented. In conclusion, it was confirmed that an effective lightweight design of the cylinder structure for common bulkhead propulsion tank could be realized.

Three dimensional dynamic soil interaction analysis in time domain through the soft computing

  • Han, Bin;Sun, J.B.;Heidarzadeh, Milad;Jam, M.M. Nemati;Benjeddou, O.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.761-773
    • /
    • 2021
  • This study presents a 3D non-linear finite element (FE) assessment of dynamic soil-structure interaction (SSI). The numerical investigation has been performed on the time domain through a Finite Element (FE) system, while considering the nonlinear behavior of soil and the multi-directional nature of genuine seismic events. Later, the FE outcomes are analyzed to the recorded in-situ free-field and structural movements, emphasizing the numerical model's great result in duplicating the observed response. In this work, the soil response is simulated using an isotropic hardening elastic-plastic hysteretic model utilizing HSsmall. It is feasible to define the non-linear cycle response from small to large strain amplitudes through this model as well as for the shift in beginning stiffness with depth that happens during cyclic loading. One of the most difficult and unexpected tasks in resolving soil-structure interaction concerns is picking an appropriate ground motion predicted across an earthquake or assessing the geometrical abnormalities in the soil waves. Furthermore, an artificial neural network (ANN) has been utilized to properly forecast the non-linear behavior of soil and its multi-directional character, which demonstrated the accuracy of the ANN based on the RMSE and R2 values. The total result of this research demonstrates that complicated dynamic soil-structure interaction processes may be addressed directly by passing the significant simplifications of well-established substructure techniques.