• Title/Summary/Keyword: Nonlinear spring element

Search Result 122, Processing Time 0.031 seconds

Numerical Study on the Dynamic Response in Elastomeric Oil Seals

  • Shim, Woo Jeon;Sung, Boo-Yong;Kim, Chung Kyun
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.43-47
    • /
    • 2000
  • Oil seals will experience a small amplitude dynamic excitation due to the shaft eccentricity as well as out-of-roundness of the shaft. The direct integration method is selected to analyze the time domain response of the seal lip-shaft contact. The physical properties of rubber seal materials are experimentally analyzed. Effects of both frequency and temperature on the material stiffness behavior are investigated for the linear viscoelastic materials of the seal. Using the nonlinear transient model, a finite element analysis of the lip-shaft contact behaviors under dynamic conditions is presented as a function of the shaft eccentricity, the shaft interference and the garter spring stiffness. The FEM results based on the experimental data indicate that the increased rotating speed may produce the separation conditions. These results will be very useful in predicting the leakage of oil seals under dynamic conditions.

  • PDF

Characteristiis of Dynamic Response in the Human Head and Neck to Implusive Loading (충격력에 대한 인체의 머리와 목의 동력학적 응답특성)

  • 김영은;김정훈
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.491-498
    • /
    • 1995
  • A numerical human head/neck model was constructed for analyzing the implication in decleration injuries. This model consists of nine rigid bodies representing the head, cervical vertebrae C1-C7, and T1. These rigid bodies were connected by intervertebral disks described by massless beam elements. Muscles and ligaments were also incoperated in the model represented by nonlinear spring and viscoblastic element respectively Agreement of the analytical kinematic response with the results of experimental data from a volunteer run was satisfactory. Moreover, possible injury estimation from the calculated moment, force variations in the disc, and force variation in ligaments matched well with clinical observations.

  • PDF

Plastification procedure of laterally-loaded steel bars under a rising temperature

  • Huang, Zhan-Fei;Tan, Kang-Hai;England, George L.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.699-715
    • /
    • 2010
  • This paper investigates the structural responses of axially restrained steel beams under fire conditions by a nonlinear finite element method. The axial restraint is represented by a linear elastic spring. Different parameters which include beam slenderness ratio, external load level and axial restraint ratio are investigated. The process of forming a mid-span plastic hinge at the mid-span under a rising temperature is studied. In line with forming a fully plastic hinge at mid-span, the response of a restrained beam under rising temperature can be divided into three stages, viz. no plastic hinge, hinge forming and rotating, and catenary action stage. During catenary action stage, the axial restraint pulls the heated beam and prevents it from failing. This study introduces definitions of beam limiting temperature $T_{lim}$, catenary temperature $T_{ctn}$ and warning time $t_{wn}$. Influences of slenderness ratio, load level and axial restraint ratio on $T_{lim}$, $T_{ctn}$ and $t_{wn}$ are examined.

Dynamic Behaviour of Pile Foundation with Scour (세굴을 고려한 말뚝기초의 동적 거동분석)

  • 김정환;허택영;박용명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.55-62
    • /
    • 2003
  • This study considered the effect of scour depth on the behaviour of pile foundation of bridge structure under seismic excitation. The numerical model was composed of the superstructure, pile foundation and soil. The superstructure and pile was modeled by beam elements and soil was by spring elements. The pile head and concrete footing was considered as hinge and rigid connected situation, respectively. A toro-gap element was used to model the expansion joint of superstructure. Nonlinear dynamic analysis was carried out on the constructed model. It was acknowledged that the steel pile become to yield after the scour depth reached about 2.0m.

  • PDF

Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes

  • He, Tao
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.423-448
    • /
    • 2015
  • In this paper the unsteady fluid-structure interaction (FSI) problems with large structural displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split (CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is advanced by Newmark-${\beta}$ method in time. The dynamic mesh is updated by using moving submesh approach that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken's ${\Delta}^2$ method is carried out to couple different solvers within the implicit and semi-implicit schemes. Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the performance of the proposed methods. The overall numerical results agree well with the existing data, demonstrating the validity and applicability of the present approaches.

Mechanical model for seismic response assessment of lightly reinforced concrete walls

  • Brunesi, E.;Nascimbene, R.;Pavese, A.
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.461-481
    • /
    • 2016
  • The research described in this paper investigates the seismic behaviour of lightly reinforced concrete (RC) bearing sandwich panels, heavily conditioned by shear deformation. A numerical model has been prepared, within an open source finite element (FE) platform, to simulate the experimental response of this emerging structural system, whose squat-type geometry affects performance and failure mode. Calibration of this equivalent mechanical model, consisting of a group of regularly spaced vertical elements in combination with a layer of nonlinear springs, which represent the cyclic behaviour of concrete and steel, has been conducted by means of a series of pseudo-static cyclic tests performed on single full-scale prototypes with or without openings. Both cantilevered and fixed-end shear walls have been analyzed. After validation, this numerical procedure, including cyclic-related mechanisms, such as buckling and subsequent slippage of reinforcing re-bars, as well as concrete crushing at the base of the wall, has been used to assess the capacity of two- and three-dimensional low- to mid-rise box-type buildings and, hence, to estimate their strength reduction factors, on the basis of conventional pushover analyses.

A Laterally Driven Electromagnetic Microoptical Switch Using Lorentz force (로렌츠 힘을 이용한 평면구동형 마이크로 광스위치)

  • Han, Jeong-Sam;Ko, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.195-201
    • /
    • 2005
  • A laterally driven electromagnetic microactuator (LaDEM) is presented, and a micro-optical switch is designed and fabricated as a possible application. LaDEM provides parallel actuation of the microactuator to the silicon substrate surface (in-plane mode) by the Lorentz force. Poly-silicon-on-insulator (Poly-SOI) wafers and a reactive ion etching (RIE) process were used to fabricate high-aspect-ratio vertical microstructures, which allowed the equipment of a vertical micro mirror. A fabricated arch-shaped leaf spring has a thickness of $1.8{\mu}m$, width of $16{\mu}m$, and length of $800{\mu}m$. The resistance of the fabricated structure fer the optical switch was approximately 5$\Omega$. The deflection of the leaf springs increases linearly up to about 400 mA and then it demonstrates a buckling behavior around the current value. Owing to this nonlinear phenomenon, a large displacement of $60{\mu}m$ could be measured at 566 mA. The displacement-load relation and some dynamic characteristics are analyzed using the finite element simulations.

Structural Optimization for Nonlinear Dynamic Response of Solenoid Actuator (솔레노이드 액추에이터의 비선형 동적응답에 대한 구조최적설계)

  • Baek, Seokheum;Kim, Hyunsu;Jang, Deukyul;Lee, Seungbeom;Kwon, Youngseok;Ro, Euidong;Lee, Changhoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.113-120
    • /
    • 2013
  • This paper proposes a design optimization approach for core of solenoid actuators by combining optimization techniques with the finite element method (FEM). A solenoid is an important element part which hydraulically controls a transmission system, etc. The demanded feature of the solenoid is that it performs an electromagnetic force output being constant regardless of the stroke and being proportional to coil current. The plunger compresses a spring with a minimum force of 12 N over an 1.7 mm travel. The orthogonal array, analysis of variance (ANOVA) techniques and response surface optimization, are employed to determine the main effects and their optimal design variables. The methodology is demonstrated as a optimization tool for the core design of a solenoid actuator.

Analysis of biomechanical change of adjacent motion segment of the lumbar spine with an implanted artificial disc (인공추간판 적용 시 인접 운동 분절에서의 변화 분석)

  • Kim Y.E.;Yun S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.244-247
    • /
    • 2005
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain and used clinically, biomechanical change with its implantation seldom studied. To evaluate the effect of artificial disc implantation on the biomechanics of lumbar spinal unit, nonlinear three-dimensional finite element model of L1-L5, S1 was developed and strain and stress of vertebral body and surrounding spinal ligaments were predicted. Intact osteoligamentous L1-L5, S1 model was created with 1-mm CT scan of a volunteer and known material property of each element were applied. This model also includes the effect of local muscles which was modeled with pre-strained spring elements. The intact model was validated with reported biomechanical data. Two models implanted with artificial discs, SB Charite or Prodisc, at L4/5 via anterior approach were also developed. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, force on spinal ligaments, facet joint contact force with $2\sim12$ Nm flexion-extension moment.

  • PDF

Obliquely incident earthquake for soil-structure interaction in layered half space

  • Zhao, Mi;Gao, Zhidong;Wang, Litao;Du, Xiuli;Huang, Jingqi;Li, Yang
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.573-588
    • /
    • 2017
  • The earthquake input is required when the soil-structure interaction (SSI) analysis is performed by the direct finite element method. In this paper, the earthquake is considered as the obliquely incident plane body wave arising from the truncated linearly elastic layered half space. An earthquake input method is developed for the time-domain three-dimensional SSI analysis. It consists of a new site response analysis method for free field and the viscous-spring artificial boundary condition for scattered field. The proposed earthquake input method can be implemented in the process of building finite element model of commercial software. It can result in the highly accurate solution by using a relatively small SSI model. The initial condition is considered for the nonlinear SSI analysis. The Daikai subway station is analyzed as an example. The effectiveness of the proposed earthquake input method is verified. The effect of the obliquely incident earthquake is studied.