• 제목/요약/키워드: Nonlinear spring

검색결과 384건 처리시간 0.03초

파워 어시스트 시스템을 위한 이동 머니퓰레이터의 제어 (Control of Mobile Manipulators for Power Assist Systems)

  • 이형기;성영휘;정명진
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권2호
    • /
    • pp.74-80
    • /
    • 2000
  • In this paper, we present a control method of mobile power assist systems. Most of mobile power assist systems have a heavy base for preventing easy tumbling, so continual movement of the base during operations causes high energy consumption and gives the high risk of human injury. Furthermore, the slow dynamics of the base limits the frequency bandwidth of the whole system. Thus we propose a cooperation control method of the mobile base and manipulator, which removes the unnecessary movements of the base. In our scheme, the mobile base does not move until the center of gravity(C.G) of the system goes outside a safety region. When C.G. reaches the boundary of the safety region, the base starts moving to recover the manipulator's initial configuration. By varying the parameters of a human impedance controller, the operator is warned by a force feedback that C.G. is on the marginal safety region. Our scheme is implemented by assigning a nonlinear mass-damper-spring impedance to the tip of the manipulator. Our scheme is implemented by a nonlinear mass-spring impedance to the tip of the manipulator. The experimental results show the efficacy of the proposed control method.

  • PDF

TS 제진공법으로 내진보강된 철근콘크리트 골조의 내진성능(Part 2:해석적 연구) (Seismic Performance of RC Frame System Retrofitted with TS Seismic Strengthening Method(Part 2:Analytical Study))

  • 정명철;송정원;송진규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권2호
    • /
    • pp.148-153
    • /
    • 2018
  • 본 연구에서는 TS 내진보강공법의 내진보강 효과 검증을 목적으로 7개의 지진파에 대한 TS 댐퍼(Tension Spring-Damper)로 내진보강된 구조물의 비선형 시간이력해석을 수행하였다. 비선형 시간이력 해석을 통해 얻어진 무보강 구조물의 층간변위비와 에너지소산 양과 비교한 결과 층간변위비가 약 30% 가량 감소하였고, 구조체를 통한 에너지 소산의 양은 반감되었다. 이를 통해 TS 내진보강공법의 제진성능이 우수함을 확인하였다.

반복하중을 받는 대형 콘크리트 판구조의 비선형 해석 (Nonlinear Analysis of Large Concrete Panel Structures subjected to Cyclic Loads)

  • 정봉오;서수연;이원호;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.113-120
    • /
    • 1994
  • Large Concrete Panel Structures behave quite differently from frame or monolithic shear wall structures because of the weakness of Joint in stiffness and strength. The joint experiences large deformation such as shear-slip in vertical and horizontal joint and rocking and crushing in horizontal joint because of localized stress concentration, but the wall panels behave elastically under cyclic loads. In order to describe the nonlinear behavior of the joint in the analysis of PC structures, different analysis technique from that of RC structures is needed. In this paper, for analysis of large concrete panel subassemblage subjected to cyclic loads, the wall panels are idealized by elastic finite elements, and the joints by nonlinear spring elements with various load-deflection relationship. The analytical results are compared with the experimental results on the strength, stiffness, energy dissipation and lateral drift, and the effectiveness of this computer analysis modelling technique is checked.

  • PDF

수평접합부의 비탄성 특성을 고려한 프리캐스트 대형판넬 구조물의 비선형 해석에 관한 연구 (Nonlinear Analysis of Precast Large Panel Structures Considering the Inelastic Properties of Horizontal Joints)

  • 정일영;최완철;송진규;강해관
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.45-52
    • /
    • 1995
  • The stability and integrity of precast large panel structures are analyzed with nonlinear mathematical model considering the inelastic properties of horizontal joints. In this research, an analysis for cyclic loading test was carried out by the macro model that idealized the horizontal joints as inelastic-nonlinear spring systems. As a results, the strain hardening ratio of shear slip element was estimated as about 0.05%- 0.2% of initial shear stiffness. And under lateral load, the rocking motion due ti overturning moment was dominant rather than shear slip motion in the behavior of precast structures.

  • PDF

Comparison of viscous and kinetic dynamic relaxation methods in form-finding of membrane structures

  • Labbafi, S. Fatemeh;Sarafrazi, S. Reza;Kang, Thomas H.K.
    • Advances in Computational Design
    • /
    • 제2권1호
    • /
    • pp.71-87
    • /
    • 2017
  • This study focuses on the efficiency and applicability of dynamic relaxation methods in form-finding of membrane structures. Membrane structures have large deformations that require complex nonlinear analysis. The first step of analysis of these structures is the form-finding process including a geometrically nonlinear analysis. Several numerical methods for form-finding have been introduced such as the dynamic relaxation, force density method, particle spring systems and the updated reference strategy. In the present study, dynamic relaxation method (DRM) is investigated. The dynamic relaxation method is an iterative process that is used for the static equilibrium analysis of geometrically nonlinear problems. Five different examples are used in this paper. To achieve the grading of the different dynamic relaxation methods in form-finding of membrane structures, a performance index is introduced. The results indicate that viscous damping methods show better performance than kinetic damping in finding the shapes of membrane structures.

유한요소법을 이용한 고속응답 솔레노이드 밸브의 거동해석 (Dynamic Analysis of Fast-Acting Solenoid Valves Using Finite Element Method)

  • 권기태;한화택
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.927-932
    • /
    • 2001
  • It is intended to develope an algorithm for dynamic simulation of fast-acting solenoid valves. The coupled equations of the electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balances acting on the plunger, which include the electromagnetic force calculated from the Finite Element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well with the experimental results including bouncing effects.

  • PDF

비정상 유한요소법을 이용한 고속응답 솔레노이드 밸브의 동적거동해석 (Dynamic Analysis of Fast-Acting Solenoid Valves Using Finite Element Method)

  • 권기태;한화택
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.959-965
    • /
    • 2002
  • It is intended to develop an algorithm for dynamic simulation of a fast-acting solenoid valve. The coupled equations of electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balance acting on the plunger, which includes the electromagnetic force calculated from the Finite Element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well with the experimental results including bouncing effects.

ESTIMATION OF VEHICLE STATE AND ROAD BANK ANGLE FOR DRIVER ASSISTANCE SYSTEMS

  • Chung, T.;Yi, S.;Yi, K.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.111-117
    • /
    • 2007
  • The nonlinear characteristics of a suspension is directly related to the ride quality of a passenger car. In this study, the nonlinear characteristics of a spring and a damper of a passenger car is analyzed by dynamic experiments using the MTS single-axial testing machine. Also, a mathematical nonlinear dynamic model for the suspension is devised to estimate the ride quality using the K factor. And the effect on the variation of the parameters of the suspension is examined. The results showed that the dynamic viscosity of the oil in a damper was the parameter that most influeced the ride quality of a passenger car for the ride quality of a passenger car.

댐핑 와이어를 갖는 새도우 마스크의 해석모델에 대한 실험적 검증 (Experimental Verification of Analysis Model of the Shadow Mask with Damping Wires)

  • 김성대;김원진;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.460-465
    • /
    • 2002
  • The nonlinear vibration of the CRT shadow mask is analyzed in consideration of the V-shaped tension distribution and the effect of wire impact damping. The reduced order FEM model of the shadow mask is obtained from dynamic condensation for the mass and stiffness matrices. Damping wire is modeled using the lumped parameter method to effectively describe its contact interactions with the shadow mask. The nonlinear contact-impact model is composed of spring and damper elements, of which parameters are determined from the Hertzian contact theory and the restitution coefficient, respectively. The analysis model of the shadow mask with damping wires is experimentally verified through impact tests of shadow masks performed in a vacuum chamber. Using the validated analysis model of the shadow mask with damping wires, the‘design of experiments’technique is applied to search fur the optimal damping wire configuration so that the vibration attenuation of the shadow mask is maximized.

  • PDF

댐핑 와이어를 갖는 새도우 마스크의 해석모델에 대한 실험적 검증 (Experimental Verification of Analysis Model of the Shadow Mask with Damping Wires)

  • 김성대;김원진;이종원
    • 한국소음진동공학회논문집
    • /
    • 제12권9호
    • /
    • pp.731-737
    • /
    • 2002
  • Nonlinear vibration of the CRT shadow mask with impact damping wires is analyzed in consideration of the mask tension distribution and the effect of wire impact damping. A reduced order FEM model of the shadow mask is obtained from dynamic condensation of the mass and stiffness matrices, and damping wire is modeled using the lumped parameter method to effectively describe its contact interactions with the shadow mask. The nonlinear contact-impact model is composed of spring and damper elements, of which parameters are determined from the Hertzian contact theory and the restitution coefficient, respectively. The analysis model of the shadow mask with damping wires is experimentally verified through impact tests of shadow masks performed in a vacuum chamber.