• Title/Summary/Keyword: Nonlinear speed control

Search Result 500, Processing Time 0.034 seconds

A Torque Estimation and Switching Angle Control of SRM using Neural Network (신경회로망을 이용한 SRM의 토크 추정과 스위칭 각 제어)

  • 백원식;김민회;김남훈;최경호;김동희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.509-516
    • /
    • 2002
  • This paper presents a simple torque estimation method and switching angle control of Switched Reluctance Motor(SRM) using Neural Network(NN). SRM has gaining much interest as industrial applications due to the simple structure and high efficiency. Adaptive switching angle control is essential for the optimal driving of SRM because of the driving characteristic varies with the load and speed. The proper switching angle which can increase the efficiency was investigated in this paper. NN was adapted to regulate the switching angle and nonlinear inductance modelling. Experimental result shows the validity of the switching angle controller.

Design and Analysis of Pseudorandom Number Generators Based on Programmable Maximum Length CA (프로그램 가능 최대길이 CA기반 의사난수열 생성기의 설계와 분석)

  • Choi, Un-Sook;Cho, Sung-Jin;Kim, Han-Doo;Kang, Sung-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.319-326
    • /
    • 2020
  • PRNGs(Pseudorandom number generators) are essential for generating encryption keys for to secure online communication. A bitstream generated by the PRNG must be generated at high speed to encrypt the big data effectively in a symmetric key cryptosystem and should ensure the randomness of the level to pass through the several statistical tests. CA(Cellular Automata) based PRNGs are known to be easy to implement in hardware and to have better randomness than LFSR based PRNGs. In this paper, we design PRNGs based on PMLCA(Programable Maximum Length CA) that can generate effective key sequences in symmetric key cryptosystem. The proposed PRNGs generate bit streams through nonlinear control method. First, we design a PRNG based on an (m,n)-cell PMLCA ℙ with a single complement vector that produces linear sequences with the long period and analyze the period and the generating polynomial of ℙ. Next, we design an (m,n)-cell PC-MLCA based PRNG with two complement vectors that have the same period as ℙ and generate nonlinear sequences, and analyze the location of outputting the nonlinear sequence.

Derivation of Nacelle Transfer Function Using LiDAR Measurement (라이다(LiDAR) 측정을 이용한 나셀전달함수의 유도)

  • Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.929-936
    • /
    • 2015
  • Nacelle anemometers are mounted on wind-turbine nacelles behind blade roots to measure the free-stream wind speed projected onto the wind turbine for control purposes. However, nacelle anemometers measure the transformed wind speed that is due to the wake effect caused by the blades' rotation and the nacelle geometry, etc. In this paper, we derive the Nacelle Transfer Function (NTF) to calibrate the nacelle wind speed to the free-stream wind speed, as required to carry out the performance test of wind turbines according to the IEC 61400-12-2 Wind-Turbine Standard. For the reference free-stream wind data, we use the Light Detection And Ranging (LiDAR) measurement at the Shinan wind power plant located on the Bigeumdo Island shoreline. To improve the simple linear regression NTF, we derive the multiple nonlinear regression NTF. The standard error of the wind speed was found to have decreased by a factor of 9.4, whereas the mean of the power-output residual distribution decreased by 6.5 when the 2-parameter NTF was used instead of the 1-parameter NTF.

A Study on Nonlinear Filter for Impulse Noise Removal (Impulse 노이즈 제거를 위한 새로운 비선형 필터에 관한 연구)

  • No, Hyun-Yong;Bae, Sang-Bum;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.981-984
    • /
    • 2005
  • Recently, filtering methods for attenuating noise while preserving image details are in progress actively. And SM(standard median) fille. showed a great performance for noise removal in impulse noise environment but, it caused edge cancellation error So, variable methods that modified SM(standard median)filter have been proposed, and CWM(center weighted median) filter is representative. Also, there are several methods to improve the efficiency based on min/max operation in term of preserving detail and filtering speed. In this paper, we managed a pixel corrupted by impulsive noise using min/max value of the surrounding band enclosing a pixel, and compared the efficiency with exiting methods in the simulation.

  • PDF

Elasto-plastic Loading-unloading Nonlinear Analysis of Frames by Local Parameter Control (국부변수 조절을 통한 프레임의 탄소성 하중-제하 비선헝 해석)

  • 박문식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.435-444
    • /
    • 2001
  • Even todays, accurate and efficient algorithms for the large deformation analysis of elastoplastic frame structures lack due to the complexities of kinematics, material nonlinearities and numerical methods to cater for. The author suggests appropriate beam element based upon the incremental formulation from the 3D rod theory where Cauchy stress and engineering strain are variables to incorporate plasticity equations so that objectivity may be satisfied. A rectum mapping methods which can integrate and satisfy yield criteria efficiently is suggested and a continuation method which has global convergency and quadratic speed is developed as well. leading-unloading example problems are tested and the ideas are proved to be valuable.

  • PDF

A Study on Selection of Gas Metal Arc Welding Parameters of Fillet Joints Using Neural Network (신경회로망을 이용한 필릿 이음부의 가스메탈 아크용접변수 선정에 관한 연구)

  • 문형순;이승영;나석주
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.44-56
    • /
    • 1993
  • The arc welding processes are substantially nonlinear, in addition to being highly coupled multivariable systems, Frequently, not all the variables affecting the welding quality are known, nor may they be easily quantified. From this point of view, decoupling between the welding parameters from the welding quality is very difficult, which makes it also difficult to control the welding parameters for obtaining the desired welding quality. In this study, a neural network based on the backpropagation algorithm was implemented and adopted for the selection of gas metal arc welding parameters of the fillet joint, that is, welding current, arc voltage and welding speed. The performance of the neural network for modeling the relationship between the welding quality and welding parameters was presented and evaluated by using the actual welding data. To obtain the optimal neural network structure, various types of the neural network structures were tested with the experimental data. It was revealed that the neural network can be effectively adopted to select the appropriate gas metal arc welding parameter of fillet joints for a given weld quality.

  • PDF

A Study on Behaviors of Pile Protective Structures by Simplified Collision Model (간이충돌모델을 이용한 파일형 선박충돌방호공의 충돌거동 연구)

  • Lee, Gye Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.31-38
    • /
    • 2016
  • In this paper, the deformation-energy curves of the plastic hinges and the vessel bow, which are the major energy dissipation mechanism of a pile protective structures, were estimated, and the parametric study was performed by using those curves to apply the simplified collision model which developed in the previous study. Considered parameters were the mass of slab, the number of piles, the mass of vessel and the collision speed. As results, the difference of energy dissipation mechanism of two pile types (filled and non-filled) were revealed, and the collision behaviors of the protective structures could be tuned by the control of the inertia mass of capping slab. Therefore the simplified collision model can be used in a primary design and optimal design.

Hydraulic Pumps Driven by Multilayered Piezoelectric Elements -Mathematical Model and Application to Brake Device -

  • Konishi, Katunobu;Ukida, Hiroyuki;Sawada, Koutarou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.474-479
    • /
    • 1998
  • In this paper, we present a mathematical model of the piezoelectric pump and its application to the automobile brake system. The piezoelectric pump consists of a multi-layered piezoelectric element a diaphragm, pumping values, resonant pipes and accumulators, and the maximum pumping power of 62W nab obtained in the previous experiments by using the piezoelectric element of 22mm diameter and 55.5mm length. A detailed mathematical model of the pump is derived here by considering the compressibility of the working oil, nonlinear characteristics of piezoelectric element, the time delay of pumping values' action and be on. The validity of the model is illustrated by comparing the experimental data and the simulation results. Using the mathematical model of the piezoelectric pump, a brake system for automobile disk brake is also simulated in this paper. The brake system consists of a piezoelectric pump as a power source, calipers and its piston to generate brake force, and a three position solenoid value to change the brake situation. It is shown that 15mm/sec of piston speed and 20kN of piston force are obtained by using the piezoelectric element of 33mm diameter and 55.5mm length.

  • PDF

Large Eddy Simulations on the Configuration Design of Afterbodies for Drag Reduction (저항감소를 위한 물체후방의 형상설계에 관한 LES 해석)

  • Park, Jong-Chun;Kang, Dae-Hwan;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.49-55
    • /
    • 2003
  • When a body with slant angle after its shoulder is moving at high speed, the turbulent motion around the afterbody is generally associated with the flaw separation and determines the normal component of the drag. By changing the slant angle of afterbody, there exists a critical angle at which the drag coefficients change drastically. Understanding and control of the turbulent separated flows are of significant importance for the design of optimal configuration of the moving bodies. In the present paper, a new Large Eddy Simulation technique has been developed to investigate turbulent vortical motions around the afterbodies with slant angle. By basis of understanding the structure of turbulent flaw around the body, the new configuration of afterbodies are designed to reduce the drag of body and the nonlinear effects due to the interaction between the body configuration and the turbulent separated flows are investigated by use of the developed LES technique.

  • PDF

Design of a Fuzzy Logic Controller Using an Adaptive Evolutionary Algorithm for DC Series Motors (적응진화 알고리즘을 사용한 DC 모터 퍼지 제어기 설계에 관한 연구)

  • Kim, Dong-Wan;Hwang, Gi-Hyun;Lee, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1019-1028
    • /
    • 2007
  • In this paper, adaptive evolutionary algorithm(AEA) is proposed, which uses both genetic algorithm(GA) with good global search capability and evolution strategy(ES) with good local search capability in an adaptive manner, when population evolves to the next generation. In the reproduction procedure, proportion of the population for GA and ES is adaptively determined according to their fitness. The AEA is used to design membership functions and scaling factors of the fuzzy logic controller(FLC). To evaluate the performance of the proposed FLC design method, we make an experiment on the FLC for the speed control of an actual DC series motor system with nonlinear characteristics. Experimental results show that the proposed controller has better performance than PD controller.