• Title/Summary/Keyword: Nonlinear roll Equation

Search Result 28, Processing Time 0.026 seconds

Stochastic Prediction of Rolling of Ships in Irregular Waves (불규칙 해상의 선박 횡요의 확률론적 예측)

  • Gwon, Sun-Hong;Kim, Dae-Ung
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.51-57
    • /
    • 1991
  • 불규칙 해상에서 선박의 큰 횡요각의 예측이 중요한 과제로 대두 되고 있다. 본 논문에서는 통계적 해석에 의한 이의 예측 방법을 제시한다. 즉 주어진 비 선형 횡요운동 방정식으로 부터 배의 횡요각과 각속도의 결합 확률 밀도 함수를 구하는 방법을 도입하고 각종 계수들의 값의 변화에 따른 예측 결과를 다른 논문에서 제시한 시뮬레이션 결과와 비교하였다.

  • PDF

Numerical simulations of two-dimensional floating breakwaters in regular waves using fixed cartesian grid

  • Jeong, Kwang-Leol;Lee, Young-Gill
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.206-218
    • /
    • 2014
  • The wave attenuation by floating breakwaters in high amplitude waves, which can lead to wave overtopping and breaking, is examined by numerical simulations. The governing equations, the Navier-Stokes equations and the continuity equation, are calculated in a fixed Cartesian grid system. The body boundaries are defined by the line segment connecting the points where the grid line and body surface meet. No-slip and divergence free conditions are satisfied at the body boundary cell. The nonlinear waves near the moving body is defined using the modified marker-density method. To verify the present numerical method, vortex induced vibration on an elastically mounted cylinder and free roll decay are numerically simulated and the results are compared with those reported in the literature. Using the present numerical method, the wave attenuations by three kinds of floating breakwaters are simulated numerically in a regular wave to compare the performance.

Elastohydrodynamic Lubrication of Line Contacts Incorporating Bair & Winer's Limiting Shear Stress Rheological Model (한계전단응력형태의 Bair & Winer 리올로지 모델을 사용한 선접촉 탄성유체윤활해석)

  • 이희성;양진승
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.85-93
    • /
    • 1998
  • The Bair & Winer's limiting shear stress rheological model is incorporated into the Reynolds equation to successfully predict the traction and film thickness for an isothermal line contact using the primary rheological properties. The modified WLF viscosity model and Barus viscosity model are also adapted for the realistic prediction of EHD tractional behavior. The influences of the limiting shear stress and slide-roll ratio on the pressure spike, film thickness, distribution of shear stress and nonlinear variation of traction are examined. A good agreement between the disc machine experiments and numerical traction prediction has been established. The film thickness due to non-Newtonian effects does not deviate significantly from the fdm thicknesss with Newtonian lubricant.

Modeling and State Observer Design for Roll Slip in Cold Cluster Mills (냉간압연 다단 압연기의 롤 슬립 모델링 및 상태 관측기 설계)

  • Kang, Hyun Seok;Hong, Wan Kee;Hwang, I Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1543-1549
    • /
    • 2012
  • This study focuses on the state space model and the design of a state observer for the slip dynamics between rolls in STS cold cluster mills. First, a mathematical model of the roll slip is given as a nonlinear differential equation. Then, by using a Taylor series expansion, it is linearized as a state space model. Next, by using Gopinath's algorithm, a minimal-order state observer based on the state space model is designed to estimate the angular speed of all idle rolls except for an actuated roll that is measureable. Finally, a computer simulation is used to validate that the proposed state space model very well describes slip dynamics between, and moreover, the state observer very well estimates the angular speed of the idle roll.

Statistical Analysis of Random Ship Rolling Using Equivalent Linearization Method (등가선형화방법을 이용한 선체의 불규칙 횡동요 운동의 통계적 해석)

  • Dong-Soo Kim;Won-Kyoung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.39-45
    • /
    • 1993
  • In order to analyze the rolling motion of a ship in random beam waves we have used the equivalent linearization method. The quadratic nonlinear damping, the cubic and quintic nonlinear restoring moments were added to a single degree of freedom linear equation of roll motion. The irregular excitation moment was assumed to be the Gaussian white noise. The statistical characteristic of the response by the equivalent linearization method was compared with the simulation result.

  • PDF

Analysis of Output Irregularity from the Transient Behavior of Bundle in a Flow Field (유동계 내 집속체의 과도적 거동에 따른 출력 불균제 해석)

  • Huh Y.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.965-968
    • /
    • 2005
  • Roll drafting operation causes variations in the linear density of bundles because the bundle flow cannot be controlled completely by roll pairs. Defects occurring in this operation bring about many problems successively in the next processes. In this paper, we attempt to analyze the draft dynamics and the linear density irregularity based on the governing equation of a bundle motion that has been suggested in our previous studies. For analyzing the dynamic characteristics of the roll drafting operation, it is indispensable to investigate a transient state in time domain before the bundle flux reaches a steady state. However, since governing equations of bundle flow consisting of continuity and motion equations turn out to be nonlinear, and coupled between variables, the solutions for a transient state cannot be obtained by an analytical method. Therefore, we use the Finite Difference Method(FDM), particularly, the FTBS(Forward-Time Backward-Space) difference method. Then, the total equations system yields to an algebraic equations system and is solved under given initial and boundary conditions in an iterative fashion. From the simulation results, we confirm that state variables show different behavior in the transient state; e.g., the velocity distribution in the flow field changes more quickly the linear density distribution. During a transient flow in a drafting zone, the output irregularity is influenced differently by the disturbances, e.g., the variation in input bundle thickness, the drafting speed, and the draft ratio.

  • PDF

Numerical Wave Tank Technology for Multipurpose Simulation in Marine Environmental Engineering (해양환경공학의 다목적 시뮬레이션을 위한 수치파랑수조 기술)

  • 박종천
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2003
  • A virtual reality technology for multipurpose numerical simulation is developed to reproduce and investigate a variety of ocean environmental problems in a 3D Numerical Wave Tank(NWT). The governing equations for solving incompressible fluid motion are Navier-Stokes equation and continuity equation. The Marker-Density function technique is adopted to implement the fully nonlinear freesurface kinematic condition. The marine environmental situations, i.e., waves, currents, etc., are reproduced by use of multi-segmented wavemakers on the basis of the so-called ″snake-principle″. In this paper, some numerical reproduction techniques for regular, and irregular waves, multi-directional waves, Bull's-eye wave. wave-current, and solitary wave are presented, and a model test in motion with large amplitude of roll angle is conducted in the developed 3D-NWT, using a overlaid grid system.

Virtual Reality Technology for Multipurpose Numerical Simulation in Marine Environmental Engineering (해양환경공학의 다목적 수치시뮬레이션을 위한 Virtual Reality 기술)

  • Park, Jong-Chul
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.174-180
    • /
    • 2002
  • A virtual reality technology for multipurpose numerical simulation is developed to reproduce and investigate a variety of ocean environmental problems in a 3D-Numerical Wave Tank. The governing equations for solving incompressible fluid motion are Navier-Stokes equation and continuity equation, and the Marker-Density function technique is adopted to implement the fully-nonlinear free-surface kinematic condition. The marine environmental situations, i.e. waves, currents, wind, etc., are reproduced by use of multi-segmented wavemaker on the basis of the so-called "snake-principle". In this paper, some numerical reproduction techniques for regular and irregular waves, multi-directional waves, Bull's-eye wave, wave-current, and solitary wave are presented, and a model test in motion with large amplitude of roll angle is conducted in the developed 3D-NWT, using a overlaid grid system.

  • PDF

A Leveling Algorithm for Strapdown Inertial Navigation System Using Extended Kalman Filter (화장칼만필터를 이용한 스티랩다운 관성항법시스템의 수평축 정렬 알고리즘)

  • Hong, Hyun-Su;Park, Chan-Gook;Han, Hyung-Seok;Lee, Jang-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1231-1239
    • /
    • 2001
  • This paper presents a new leveling algorithm that estimates the initial horizontal angles composed of roll angle and pitch angle for a moving or stationary vehicle. The system model of the EKF is designed by linearizing the nonlinear Euler angle differential equation. The measurement models are designed for the moving case and for the stationary case, respectively. The simulation results show that the leveling algorithm is ade-quate not only for acquiring the initial horizontal angles of the vehicle in the motion with acceleration and rotation but also for the stationary one.

  • PDF

Analysis of Random Ship Rolling Using Partial Stochastic Linearization (통계적 부분선형화 방법을 이용한 선체의 불규칙 횡동요 운동의 해석)

  • Dong-Soo Kim;Won-Kyoung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.37-41
    • /
    • 1995
  • In order to analyze the rolling motion of a ship in random beam waves we use the partial stochastic linearization method. The quadratic damping and the nonlinear restoring moments given by the odd polynomials up to the 11th order are added to a single degree of freedom linear equation of roll motion. The irregular excitation moment is assumed to be the Gaussian white noise. The statistical characteristics of the response by the partial stochastic linearization method is compared with results by the equivalent linearization method and Monte Carlo simulation. It is fecund that the partial stochastic linearization method is not necessarily superior to the equivalent linearization method.

  • PDF