• Title/Summary/Keyword: Nonlinear programs

Search Result 97, Processing Time 0.025 seconds

ON SYMMETRIC DUALITY IN NONDIFFERENTIABLE MATHEMATICAL PROGRAMMING WITH F-CONVEXITY

  • AHMAD I.;HUSAIN Z.
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.371-384
    • /
    • 2005
  • Usual symmetric duality results are proved for Wolfe and Mond-Weir type nondifferentiable nonlinear symmetric dual programs under F-convexity F-concavity and F-pseudoconvexity F-pseudoconcavity assumptions. These duality results are then used to formulate Wolfe and Mond-Weir type nondifferentiable minimax mixed integer dual programs and symmetric duality theorems are established. Moreover, nondifferentiable fractional symmetric dual programs are studied by using the above programs.

Development of Nonlinear Static Design Sensitivity Analysis Based ANSYS (ANSYS 비선형 정적설계민감도해석 외부모듈 개발)

  • Choi, Byung-Nam;Jung, Jae-Jun;Yoo, Jung-Hoon;Lee, Tae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.543-547
    • /
    • 2001
  • CAE has been settled down to an indispensable tool for the simulation of a mechanical system according to the development of computer-aided analysis rapidly. Particularly finite element programs have advanced to the one of most valuable things in the filed of CAE due to the remarkable progress in the implementation. But since this analysis tool mostly provides the result of the analysis, it cannot satisfy designers who are seeking for information to improve their designs. Therefore, design sensitivity analysis or optimization module has been incorporated into commercial FEA programs to satisfy the desire of designers since 1990s. Design sensitivity analysis is to compute the rate of change of response with respected to design variable. Design sensitivity analysis is classfied into static design sensitivity analysis, Eigenvalue design sensitivity analysis and dynamic design sensitivity analysis. In this research, it will be presented to nonlinear static design sensitivity analysis formulation and nonlinear static design sensitivity analysis external module based ANSYS have been developed and illustrated an example to verify the developed module.

  • PDF

SYMMETRIC DUALITY FOR NONLINEAR MIXED INTEGER PROGRAMS WITH A SQUARE ROOT TERM

  • Kim, Do-Sang;Song, Young-Ran
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.1021-1030
    • /
    • 2000
  • We formulate a pair of symmetric dual mixed integer programs with a square root term and establish the weak, strong and converse duality theorems under suitable invexity conditions. Moreover, the self duality theorem for our pair is obtained by assuming the kernel function to be skew symmetric.

  • PDF

A graphical user interface for stand-alone and mixed-type modelling of reinforced concrete structures

  • Sadeghian, Vahid;Vecchio, Frank
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.287-309
    • /
    • 2015
  • FormWorks-Plus is a generalized public domain user-friendly preprocessor developed to facilitate the process of creating finite element models for structural analysis programs. The lack of a graphical user interface in most academic analysis programs forces users to input the structural model information into the standard text files, which is a time-consuming and error-prone process. FormWorks-Plus enables engineers to conveniently set up the finite element model in a graphical environment, eliminating the problems associated with conventional input text files and improving the user's perception of the application. In this paper, a brief overview of the FormWorks-Plus structure is presented, followed by a detailed explanation of the main features of the program. In addition, demonstration is made of the application of FormWorks-Plus in combination with VecTor programs, advanced nonlinear analysis tools for reinforced concrete structures. Finally, aspects relating to the modelling and analysis of three case studies are discussed: a reinforced concrete beam-column joint, a steel-concrete composite shear wall, and a SFRC shear panel. The unique mixed-type frame-membrane modelling procedure implemented in FormWorks-Plus can address the limitations associated with most frame type analyses.

Influence of Pile Cap's Boundary Conditions in Piled Pier Structures (교량 말뚝기초의 단부 지점조건의 영향분석)

  • Jeong, Sang-Seom;Won, Jin-Oh
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.25-32
    • /
    • 2005
  • Modeling techniques of piled pier were reviewed and the influences of pile cap's boundary conditions were analyzed in this study. Among various modeling techniques, equivalent cantilever method seems relatively simple for modeling pile groups and it has some problems to determine the virtual fixed points. Through the analyses, it was found that the method of nonlinear p-y model with soil springs was more appropriate than equivalent cantilever method. The method modeling a pile group using stiffness matrix seems useful for practical design, which can represent the nonlinear three-dimensional behavior of a piled pier. In this study, the stiffness matrix of a pile group could be estimated efficiently and precisely using three-dimensional nonlinear analysis programs of pile groups (FBPier 3.0, YSGroup).

  • PDF

Analysis and Design Programming of RC Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트로 보강된 RC보의 해석 및 설계 프로그램 개발)

  • 김성도;김성수
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.319-325
    • /
    • 2004
  • In this study, analysis and design programs of bending of RC beams strengthened with fiber sheets are developed by using Visual Basic Language. The program consists two groups, ultimate strength method and nonlinear flexural analysis method. Ultimate strength method regards concrete compressive stress as a rectangular stress block and do not consider tensile stress of concrete and load-deflection curves. On the other hand, nonlinear flexural analysis considers tensile stress of concrete, load-deflection curves, state of stress distribution and failure strain of strengthening material. Also, the analysis method used in this study regards nonlinear flexural stress as compressive stress of concrete. This program can be a good tool for determining the bending strength of strengthened RC beams and estimating the amount of fiber sheets for practical use.

Analysis and Design Program of RC Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트로 보강된 RC보의 해석 및 설계 프로그램 개발)

  • Kim Seong-Do;Kim Sung-Soo
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1163-1167
    • /
    • 2004
  • This study attempts to analyze the flexural behavior of RC beams strengthened with tiber sheets according to the KCI strength method and nonlinear flexural analysis. Also based on these methods, analysis and design programs are developed by the visual basic programming language. Programs include the influence of concrete tensile capacity and failure strain of fiber sheets.

  • PDF

Analytical modelling and behavior of RC beam-column joints (RC 보-기둥 접합부의 해석 모델링과 거동)

  • 우성우;이한선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.388-391
    • /
    • 2003
  • In this study, the experimental results were simulated by using a nonlinear analysis programs IDARC 2D and RUAUMOKO 2D. These programs use a global Takeda-like model. The objectives of this study is to verify the correlation between the experimental and analytical responses of reinforced concrete (RC) frame and to provide the calibration to the available static inelastic analysis techniques. The evaluation of the accuracy of analytical simulation by IDARC 2D and RUAUMOKO 2D leads to the conclusion that the global behaviors can be, in general, simulated with limited accuracy in the linear analysis as detailing.

  • PDF

Pushover Analysis of Reinforced Concrete Shear Wall Subjected to High Axial Load Using Fiber Slices and Inelastic Shear Spring (섬유(Fiber)요소와 비선형 전단스프링을 적용한 고축력을 받는 철근콘크리트 전단벽의 비선형거동 분석)

  • Jun, Dae Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.239-246
    • /
    • 2015
  • Reinforced concrete shear walls are effective for resisting lateral loads imposed by wind or earthquakes. Observed damages of the shear wall in recent earthquakes in Chile(2010) and New Zealand(2011) exceeded expectations. Various analytical models have been proposed in order to incorporate such response features in predicting the inelastic response of RC shear walls. However, the model has not been implemented into widely available computer programs, and has not been sufficiently calibrated with and validated against extensive experimental data at both local and global response levels. In this study, reinforced concrete shear walls were modeled with fiber slices, where cross section and reinforcement details of shear walls can be arranged freely. Nonlinear analysis was performed by adding nonlinear shear spring elements that can represent shear deformation. This analysis result will be compared with the existing experiment results. To investigate the nonlinear behavior of reinforced concrete shear walls, reinforced concrete single shear walls with rectangular wall cross section were selected. The analysis results showed that the yield strength of the shear wall was approximately the same value as the experimental results. However, the yielding displacement of the shear wall was still higher in the experiment than the analysis. The analytical model used in this study is available for the analysis of shear wall subjected to high axial forces.

A Study on the Analysis and Design of Nonlinear Control Systems using Personal Computer (개인용 컴퓨터를 이용한 비선형 제어 시스템의 해석 및 설계에 관한 연구)

  • Nam, Moon-Hyun;Jeong, Cheol
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.82-85
    • /
    • 1987
  • The objective of this paper is to develop computer programs to aid in the design and analysis of control systems in which nonlinear characteristics exist. Control systems are dynamic systems, which can be described using various mathematical models. A convenient model for digital computer simulation is the state model in which described using a set of linear and non linear first order differential equations. The digital simulation was performed on a IBM PC/XT personal computer, and the computer language was BASIC. There are four possible configurations from which a user may choose. When running a program, the user is asked to enter the system parameters according to a specified control system configurations are; 1. A control system with a nonlinear element followed by a plant in a feedback configurations(NLSVF1). 2. A control system with a nonlinear device situated between two plants in a feedback configurations(NLSVF2). 3. A control system with a nonlinear element followed by a plant, followed by a the dealy in feedback configurations(TLAG). 4. A motor and load with a backlash nonlinearity between dynamic portions of the motor/load configurations (BACKLASH). The matrix from state equations are integrated using combination the trapezoidal method and fixed point iteration. Several cases which have nonlinearity were implemented on the computer and the results were discussed.

  • PDF