• Title/Summary/Keyword: Nonlinear optimization

Search Result 1,196, Processing Time 0.025 seconds

Topology Optimization of Electromagnetic Systems with Nonlinear and Eddy Current Effects (비선형 및 Eddy Current효과를 고려한 전자기 시스템의 위상 최적 설계)

  • Kang, Je-Nam;Wang, Se-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.768-770
    • /
    • 2001
  • The topology optimizations of electromagnetic systems with the nonlinear and the eddy current effects are studied using the finite element method. The topology design sensitivity formulations of nonlinear magnetostatics and eddy current systems are derived using the adjoint variable method. A computer program is developed using object orient programming and applied to the topology optimization of a C-core actuator. A numerical study shows the effects of saturation and eddy current by comparing results of topology optimizations.

  • PDF

SOLVING OF SECOND ORDER NONLINEAR PDE PROBLEMS BY USING ARTIFICIAL CONTROLS WITH CONTROLLED ERROR

  • Gachpazan, M.;Kamyad, A.V.
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.173-184
    • /
    • 2004
  • In this paper, we find the approximate solution of a second order nonlinear partial differential equation on a simple connected region in $R^2$. We transfer this problem to a new problem of second order nonlinear partial differential equation on a rectangle. Then, we transformed the later one to an equivalent optimization problem. Then we consider the optimization problem as a distributed parameter system with artificial controls. Finally, by using the theory of measure, we obtain the approximate solution of the original problem. In this paper also the global error in $L_1$ is controlled.

SOLVING NONLINEAR ASSET LIABILITY MANAGEMENT PROBLEMS WITH A PRIMAL-DUAL INTERIOR POINT NONMONOTONE TRUST REGION METHOD

  • Gu, Nengzhu;Zhao, Yan
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.981-1000
    • /
    • 2009
  • This paper considers asset liability management problems when their deterministic equivalent formulations are general nonlinear optimization problems. The presented approach uses a nonmonotone trust region strategy for solving a sequence of unconstrained subproblems parameterized by a scalar parameter. The objective function of each unconstrained subproblem is an augmented penalty-barrier function that involves both primal and dual variables. Each subproblem is solved approximately. The algorithm does not restrict a monotonic decrease of the objective function value at each iteration. If a trial step is not accepted, the algorithm performs a non monotone line search to find a new acceptable point instead of resolving the subproblem. We prove that the algorithm globally converges to a point satisfying the second-order necessary optimality conditions.

  • PDF

Sensitivity Analysis and Optimization of Nonlinear Vehicle Frame Structures (비선형 차체프레임구조물의 민감도해석 및 최적화)

  • Won, Chong-Jin;Lee, Jong-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2833-2842
    • /
    • 1996
  • This paper is to practice optimal rigidity design by the strain energy density estimation method for static buckling and sizing design sensitivity analysis for dynamic buckling of a nonlinear vehicle frame structure from those results. Using these sizing design sensitivity resutls, an optimization of a nonlinear vehicle frame structure with dynamic buckling constraint is carrried out with the graient projection method.

Fast Pattern Classification with the Multi-layer Cellular Nonlinear Networks (CNN) (다층 셀룰라 비선형 회로망(CNN)을 이용한 고속 패턴 분류)

  • 오태완;이혜정;손홍락;김형석
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.9
    • /
    • pp.540-546
    • /
    • 2003
  • A fast pattern classification algorithm with Cellular Nonlinear Network-based dynamic programming is proposed. The Cellular Nonlinear Networks is an analog parallel processing architecture and the dynamic programing is an efficient computation algorithm for optimization problem. Combining merits of these two technologies, fast pattern classification with optimization is formed. On such CNN-based dynamic programming, if exemplars and test patterns are presented as the goals and the start positions, respectively, the optimal paths from test patterns to their closest exemplars are found. Such paths are utilized as aggregating keys for the classification. The algorithm is similar to the conventional neural network-based method in the use of the exemplar patterns but quite different in the use of the most likely path finding of the dynamic programming. The pattern classification is performed well regardless of degree of the nonlinearity in class borders.

Optimization of Fuzzy Neural Network based Nonlinear Process System Model using Genetic Algorithm (유전자 알고리즘을 이용한 FNNs 기반 비선형공정시스템 모델의 최적화)

  • 최재호;오성권;안태천
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.267-270
    • /
    • 1997
  • In this paper, we proposed an optimazation method using Genetic Algorithm for nonlinear system modeling. Fuzzy Neural Network(FNNs) was used as basic model of nonlinear system. FNNs was fused of Fuzzy Inference which has linguistic property and Neural Network which has learning ability and high tolerence level. This paper, We used FNNs which was proposed by Yamakawa. The FNNs was composed Simple Inference and Error Back Propagation Algorithm. To obtain optimal model, parameter of membership function, learning rate and momentum coefficient of FNNs are tuned using genetic algorithm. And we used simplex algorithm additionaly to overcome limit of genetic algorithm. For the purpose of evaluation of proposed method, we applied proposed method to traffic choice process and waste water treatment process, and then obtained more precise model than other previous optimization methods and objective model.

  • PDF

AN ACTIVE SET SQP-FILTER METHOD FOR SOLVING NONLINEAR PROGRAMMING

  • Su, Ke;Yuan, Yingna;An, Hui
    • East Asian mathematical journal
    • /
    • v.28 no.3
    • /
    • pp.293-303
    • /
    • 2012
  • Sequential quadratic programming (SQP) has been one of the most important methods for solving nonlinear constrained optimization problems. Recently, filter method, proposed by Fletcher and Leyffer, has been extensively applied for its promising numerical results. In this paper, we present and study an active set SQP-filter algorithm for inequality constrained optimization. The active set technique reduces the size of quadratic programming (QP) subproblem. While by the filter method, there is no penalty parameter estimate. Moreover, Maratos effect can be overcome by filter technique. Global convergence property of the proposed algorithm are established under suitable conditions. Some numerical results are reported in this paper.

Optimization of a semi-batch esterification reactor (반회분 에스테르화 반응기의 최적화)

  • 이융효;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.582-588
    • /
    • 1993
  • A scheme of dynamic optimization for batch reactor his been developed and applied to a semi-batch esterification reactor. To obtain optimal operating conditions for the given semi-batch reactor system with complex reaction kinetic and process constraints, a general nonlinear programming solver and finite element techniques have been introduced. The optimization results for the complex reactor system have been compared with those of Kumar et al. [1984] to show better optimization performance. The proposed optimizing scheme has been applied to the free end time problem to obtain the realistic operating condition. The results can supply valuable information for economic operation of the given batch esterification reactor.

  • PDF

Optimum Allocation of Reactive Power in Real-Time Operation under Deregulated Electricity Market

  • Rajabzadeh, Mahdi;Golkar, Masoud A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.337-345
    • /
    • 2009
  • Deregulation in power industry has made the reactive power ancillary service management a critical task to power system operators from both technical and economic perspectives. Reactive power management in power systems is a complex combinatorial optimization problem involving nonlinear functions with multiple local minima and nonlinear constraints. This paper proposes a practical market-based reactive power ancillary service management scheme to tackle the challenge. In this paper a new model for voltage security and reactive power management is presented. The proposed model minimizes reactive support cost as an economic aspect and insures the voltage security as a technical constraint. For modeling validation study, two optimization algorithm, a genetic algorithm (GA) and particle swarm optimization (PSO) method are used to solve the problem of optimum allocation of reactive power in power systems under open market environment and the results are compared. As a case study, the IEEE-30 bus power system is used. Results show that the algorithm is well competent for optimal allocation of reactive power under practical constraints and price based conditions.

Immune Algorithm Controller Design of DC Motor with parameters variation (DC 모터 파라메터 변동에 대한 면역 알고리즘 제어기 설계)

  • 박진현;전향식;이민중;김현식;최영규
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.175-178
    • /
    • 2002
  • The proposed immune algorithm has an uncomplicated structure and memory-cell mechanism as the optimization algorithm which imitates the principle of humoral immune response, and has been used as methods to solve parameter optimization problems. Up to now, the applications of immune algorithm have been optimization problems with non-varying system parameters. Therefore, the effect of memory-cell mechanism, which is a merit of immune algorithm, is without. this paper proposes the immune algorithm using a memory-cell mechanism which can be the application of system with nonlinear varying parameters. To verified performance of the proposed immune algorithm, the speed control of nonlinear DC motor are performed. Computer simulation studies show that the proposed immune algorithm has a fast convergence speed and a good control performances under the varying system parameters.

  • PDF