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SOLVING NONLINEAR ASSET LIABILITY MANAGEMENT
PROBLEMS WITH A PRIMAL-DUAL INTERIOR POINT
NONMONOTONE TRUST REGION METHOD!

NENGZHU GU* AND YAN ZHAO

ABSTRACT. This paper considers asset liability management problems when
their deterministic equivalent formulations are general nonlinear optimiza-
tion problems. The presented approach uses a nonmonotone trust region
strategy for solving a sequence of unconstrained subproblems parameter-
ized by a scalar parameter. The objective function of each unconstrained
subproblem is an augmented penalty-barrier function that involves both
primal and dual variables. Each subproblem is solved approximately. The
algorithm does not restrict a monotonic decrease of the objective function
value at each iteration. If a trial step is not accepted, the algorithm per-
forms a nonmonotone line search to find a new acceptable point instead of
resolving the subproblem. We prove that the algorithm globally converges
to a point satisfying the second-order necessary optimality conditions.
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1. Introduction

Asset liability management problems have received considerable attention in
financial planning under uncertainty, see, for example, Ziemba and Mulvey [19],
Consiglio et al. [4], Hilli et al. [14]. Generally, these problems can be formu-
lated as stochastic programming problems. However, the deterministic equiv-
alent formulations of these stochastic programs have large dimensions even for
moderate numbers of assets, time stages and scenarios per time stage. Therefore,
most of asset liability management models have been limited to simple linear or
quadratic models such that they can be solved by currently available solvers.
Recently, many papers have been devoted to solve nonlinear muitistage stochas-
tic programming problems. For instance, Gondzio and Grothey [11] proposed
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a parallel interior point algorithm for multistage stochastic quadratic program-
ming problems. Zhao [18] presented a algorithm based on the Lagrangian dual
method for multistage stochastic convex programming problems. Berkelaar et
al. [2] developed an algorithm based on the path-following interior point method
combined with the homogeneous self-dual embedding technique for multistage
stochastic convex programming problems. The same characteristic in these pa-
pers is that Newton step is used to solve the Newton equations linear system.
Motivated by these studies, in this paper we propose a primal-dual interior
point nonmonotone trust region method for solving general nonlinear multi-
stage stochastic programming problems (general nonlinear multistage stochastic
programming asset liability management models can be seen in Gondzio and
Grothey [12]). Our method suggests that we only use approximate Newton step
to solve the linear system. Particularly, a nonmonotone strategy is helpful to re-
duce computational cost, especially for large dimension optimization problems.
Without loss of generality, we consider the deterministic equivalent formulation
of a general nonlinear multistage asset liability management problem of the form

min - f(z)
s.t. ci(x)=0,i€ E, (1)

ei(z)>0,iel,

where ¢(x) is an m-vector of nonlinear functions with i-th component ¢; (), =
1,2,---,m, and E and I are nonintersecting index sets. It is assumed that f
and c are twice continuously differentiable, with the gradient of f(z) denoted by
g(z) and the m x n Jacobian of ¢(z) denoted by J(z).

Interior point methods are well-suited to solve large dimension nonlinear op-
timization problems. In recent years, interior point methods have received ex-
tensive attention, see, e.g., [1,3,5,7,8,17]. For a more complete survey, see Gertz
and Gill [9] and Forsgren, Gill and Wright [7]. Due to Fiacco and McCormick
[6] classical penalty-barrier method, an alternative method for solving problem
(1) is to minimize the following unconstrained function

1
LF(z) = f(z) + oM Z ci(z)? — p Z Ine(x), (2)
ek iel

where the positive parameter {1} is a decreasing sequence. The first constraint
term on the right-hand side is the usual quadratic penalty function with penalty
parameter 1/(2u). The second constraint term is the logarithmic barrier func-
tion, which creates a positive singularity at the boundary of the feasible region
and therefore ensures strict feasibility while approaching the solution. The mech-
anism of primal-dual methods involves a two-level structure of outer and inner
iterations. Each outer iteration is associated with an element of a decreasing
positive sequence of parameters {u;} such that lim; . r; = 0. The inner iter-
ations correspond to an iterative process for the unconstrained minimization of
L*(z) for a given p.
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To describe principia of primal-dual interior methods, we consider the first-
order necessary optimality conditions associated with problem (1). At an opti-
mal solution *, there exists an m-vector A* of Lagrange multipliers such that

Vi(x*) — J()TN =0,
e{z*y =0, i€ E,
ez =0, el

A2 0, g(a*) >0, i€l

If we combine the first three terms of (3) in a compact form, then (3) can be
reformulated as F>°(z*, A\*) = 0, and AT > 0, ¢;(z*) > 0 for ¢ € I, where F'™ is
the vector-valued function

wor V@)~ J(z)TA .
ey = (V0 P, )
and r;(z, A) = ¢;(z),i € E;ri{z,\) = ei{x) A\, i € L.

Primal-dual methods can be interpreted as solving a sequence of nonlinear
systems in which each condition ¢;(z) = 0,i € E is perturbed as ¢;(x) +pr; = 0
and ¢;(z)A; = 0,7 € I is perturbed as ¢;(z)A; — g = 0 for some small positive
. The perturbed equation F#(z, \) = 0 can be solved by performing a form of
Newton's method in which z and A are chosen to be interior for the inequalities
ci{z) > 0and Ay > 0 for ¢ € I. The inner mechanism of primal-dual interior
method is to solve equation F#(z, ) = 0 inaccurately for a positive decreasing
sequence of g such that (z(u), A(11)) converges to (z*,y*) as u — 0.

We now give a brief description for inner iteration. For any value of u, an
associated point (z(p), A(u)) on the trajectory satisfies the n + m equations

Vf(z) - J(z)"X =0,
c{z)+pri =0, i€ E,
(@) —p=0, i€l

These relations imply that (z(u), A(p)) can be determined by solving n + m
nonlinear equations in the n 4+ m unknowns (z, A) using an iterative method.
Let v denotes the n + m vector of unknowns {z,\) at an interior point, that
is, a point such that ¢;(z) > 0 and A, > 0 for i € I. If F#{v) denotes the
function F#(z, A), then a Newton direction Av = (Ax, AM) is defined by the
Newton equations F*(v)Av = —F*(v). To describe these Newton equations
conveniently, it is helpful to rewrite the second and the third terms of (4) in
vector form IH(z)(A — n#(x)) = 0, where w#(x) is given as

pey § —ail@)/p if i€k,
T (I)‘{ pledxy if iel,
and T'(x) is the diagonal matrix with diagonal entries

7 if 1€k,
clz) if 1€l

Vi ()
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Using these definitions, F*(z, A) and (F*) (2, A) can be expressed as

by _ Vf(m)—J(a:)T/\ Y (g B H(z, ) fJ(x)T
“’”“(r“(w)uwﬂ(x»)’ (F ’A’(Z@)J(a:) I(z) )

where H(z,\) = V2f(z) — Y.7", AV2¢;(z) denotes the Hessian of the La-
grangian, and Z(A) is a diagonal matrix with diagonal entries
_ 1 if i€k,
w0 = { N if qel.
Thus the Newton equations have the form

(Fo e ) () -(Fonen) )

This is an unsymmetric primal-dual system, it can be symmetrized by premul-
tiplying the last m rows by Z~! and changing the sign of A), namely

( H(z,\) J(z)T > ( Az ) B ( Vf(z) — J(x)TA ) (5)
J(x) —W(z) —AX ) T\ W(z)(A—7H(x)) )’

where W = Z7II'. The cost of a primal-dual iteration is dominated by the cost
of solving the linear system (4).

The primal-dual method we stated above requires that every iterate (z, A)
satisfies ¢;(z) > 0 and A; > 0 for all 4 € I, and that (z(u), A()) converge to
{z*, A*) as p converge to zero. To ensure global convergence it is necessary to use
a merit function to force the early iterates towards the trajectory {(z(u), A(p}).
Although (2) is a classical penalty-barrier function, however, if L* is used as as
merit function, the iterative information of the dual variables can not be obtained
simply because it does not have terms involving A. An alternative approach is
based on the properties of the Forsgren-Gill augmented barrier-penalty function:

@ () = f(@) = Y (o) + 3 3 (e

el i€l

ci(x) A o ci(x) A 1
—u Y (@) )+ (@) )+ 2—2(61‘(.1')-‘1-/1)\1‘)2, (6)
icl H # Hice
which is the penalty-barrier function L#(x) augmented by a weighted proximity
term that measures the distance of (z,)) to the trajectory (z(p), AM(p)). A
fundamental property of Q*(xz, A) is that it is minimized with respect to both x
and A at any point @Q*(z, \) on the trajectory.
Associated with the augmented barrier-penalty function (6), a local quadratic
model is
1
. T, , *Tp._
Jin - g s+ 55 Bs=¢(s), ()
where s is a direction which combines the primal and dual variables,
(VF=JTe2r - - ( H+2JTwHlg gt
= ( W\ — 1) and B = J W . (8)
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The vector g is the gradient of the merit function VQ*, B is an approximation
of Hessian matrix V2Q. If (z,\) = (2(u), \(1)) is a point on the trajectory,
then B = V2Q*. This quadratic model gives us implications that we can solve
it by many effective methods. For instance, Newton methods and trust region
methods. It can be shown that if H + JTW~1J is positive definite, then B is
positive definite. That is, if H+J7W ~1]J is positive definite, then the solution of
the symmetric positive definite system Bs = —g¢ is the unique minimizer of o(s).
Accordingly, s = (Axz, AX) is a solution of the primal-dual system (4). This
implies that algorithms that solve the primal-dual equations are implicitly using
an approximate Newton method to minimize Q*(z, \). However, H + JTW~1J
is not necessarily positive definite, this motivate us to employ other methods
which without requiring B is positive definite.

The above theoretical analysis inspire us to recall trust region methods, which
without requirement that B is positive definite for solving a quadratic model.
Furthermore, strong convergence results are available and softwares for them are
reliable and efficient. Consider the unconstrained minimization of QH(z, \), trust
region methods minimize a quadratic model of the objective function subject to a
restriction on the length of the step. At each iteration, denoted by v; = (x;, A;),
a trial step s; is generated by solving the subproblem:

1
: T AP
[ Din g5+ 58 Bjs = ¢;(s) (9)
s.t. HSHTj < Aj,

where g; and B; are defined by (8), i.e.,
g Vi~ TP@mi =N\ g Hit2 Wi It
! WX —m5) ! Jj w; )7

|| - l7; denotes the elliptic norm ||s||, = (s7T;s)1/2 and Ay > 0 is a trust region
radius. The matrix T is a block-diagonal matrix of the form T} = diag(M;, N;),
where M; and N; are n x n and m X m symmetric positive-definite matrices.
There are many successful monotone algorithms for computing an approximate
solution of (9)(see for example [9,10,15,16]). However, monotone algorithms can
not guarantee that at each iteration an acceptable step is found. The subproblem
may be solved several times at an iteration, which can considerably increase the
total cost of computation for large scale problems.

Gertz and Gill [9] proposed a primal-dual interior point monotone algorithm
for (1) based on (6). In this paper, our purpose is to develop a primal-dual
interior point nonmonotone trust region algorithm to solve (1) based on the
convex combination nonmonotone technique of the form|[13]

f(z; + adj) < Dj + 6aV f(z;)"d;, (10)

where D; is a simple convex combination of the previous Dj;_, and f;, say
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D,:{f(xj)’ j:l
J nD; 1+ (1 —n)flz;) j>2

for some fixed n € (0, 1), or a variable 7;.

The paper is organized as follows. In Section 2, we describe the algorithm. In
Section 3, we establish the global convergence for our algorithm under suitable
conditions. Finally, we give our brief conclusions in Section 4.

; (11)

2. Nonmonotone trust region algorithm

We use || - || to represent the Euclidean norm or its subordinate matrix norm.
The least eigenvalue of a symmetric matrix A will be denoted by (min(A). Let
{¥;}; > 0 be a sequence of scalars, vectors or matrices and let {x;}; > 0 be
a sequence of positive scalars. If there exists a positive constant « such that
llosll < vxj, we write ¢; = O(x;). If there exist positive constants v; and ¥,
such that v1x; < [l¢jll < v2x;, we write ¢; = O(x;). If a vector is denoted
by a lower-case letter, the same upper-case letter denotes the diagonal matrix
whose elements are those of the vector, for instance, V = diag(v). Let Q be the
feasible points set of Q*(z, A} for every p > 0.

Similar to Section 5 in [9], we solve the trust region subproblem (9) inaccu-
rately. Given a fixed tolerance 7 € (0, 1), an approximate solution for subprob-
lem (9) only to satisfy the conditions

b5(s5) < 7¢;(s5) and ||s;l|r; <Ay, (12)
where s7 is the scaled Cauchy point, which is defined as the solution of the
problem ming g{#;(s) : Tjs = fBg;,||s|lt, < A;}. The method finds a step s;
that satisfies the sufficient decrease conditions

bi(s5) <77 and ||sjllr; < Ay, (13)

where @7 is the unique minimum of ¢;(s) on {s : |||z, < A;}. The required
conditions (12) on s; then follow from the inequalities ¢;(s;) < 7¢} < T¢;(s§).
The nonmonotone line search is given as:

Q*(v; + as;) < D*(v;) + bag] s;, (14)
where
V] @), =k
DM(vy) = { UD“J'JJ(VJ‘—I) (A -mQ" (), =2, 1o

where p;_; is the parameter value of p on the (j — 1)-th iterate.
To determine whether a trial step will be accepted, we compute p;, the ratio
between the actual reduction and the predicted reduction as
py — DH(v)) — Q*(v; + 55) (16)
$;(0) — d5(s;)
where D*(v;) is defined by (15). If p; > w, where w is a constant, we accept
s; as a successful step and let v;4, = v; + s;. Otherwise, we generate a new
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iterative point by ;11 = v; + a;s;, where «; is a steplength satisfying the line
search condition (14).
‘We now describe a nonmonotone trust region algorithm as follows:

Algorithm 1

Step 1: Given Ay > 0, choose constants ¢, ¢2, ™, €,§,8, such that ¢ <
c1<1<ez,we(0,1),e=10"%¢¢c(0,1) and § € (0,1/2). Set j :=1.

Step 2: Compute g;, if [lg;] < ¢, stop.

Step 3: Solve (9) inaccurately.

Step 4: Compute p; by (16).

Step 5: If p; > w, go to Step 6. Otherwise, compute 7;, the minimum
nonnegative integer ¢ satisfies

Q¥ (vj +Esy) < D*(vy) + 6847 5. (A7)
Set a; = 5”,
Vity = Vj + Gj855, (18)
and
AJA_ 1 € ml/j+1 - Vj”a C'I.Aj]v (19)
go to Step 7.
Step 6: Set
Vi1 = Vj + Si, (20)
and
= A, iof sillr, < Ay,
A 7 . INd; J 21
o+ { €[4, ez}, if sl = Ay @)

Step 7: Set j:=j + 1, go to Step 2.

Since { B; } may grow without bound, it is helpful to give a transformed matrix
for {B,}, such that the new transformation is bounded. Gertz and Gill [9] give
a corollary that if { f(z;)} is bounded below and {c¢;(x;)} is bounded above for
all i € I, then the sequence {Wj"l / %} is bonded. This observation leads us to
consider the transformed matrix

R oWl M MR T
g M, ”‘({1.7 +2If WM, MM, R
J 7 ‘V;i Jj W;i 7

which still remains bounded even || B;|| does not, where T; = diag{M;, W;) with
M; is a n x n symmetric positive-definite (e.g., the identify matrix) and wy; = p
for i € E, wi; = ¢;(x5)/Ai; for i € I. Therefore, at each point v = (z,A), we
consider the transformed quantities

g(v) = T %g and B(v) = T-%BT %, (23)
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Consequently, the trust region subproblem (9) can be reformulated as

1 s .
. AT ~ TH s 5 o(a
i 9j3+ 58 Bjs = ¢;(8) (24)
s.t. 5l < A,

where § = le/ %s. It is more convenient to use (24) for discussing the theoretical
properties of the algorithm. To this end, we assume that {f(z;)} is bounded
below and {c;(z;)} is bounded above for all ¢ € I, such that matrix {B;} is
bounded ({||B;||} is bounded). Associated with problem (24), line search con-
dition (17) can be written as Q“(v; + £'8;) < D(v;) + 8£G] 3;.

The properties of the approximate solution for subproblem (24) have been
reported by many researchers, see e.g., [10,15,16]. It has been shown that the
following two inequalities

$5(0) = b(s5) > 7195l min{A;, 13,11/11B;11} (25)
and
8585 < —llg;ll min{A;, 13;1/11B511} (26)
hold, where 7 € (0,1) is a constant (see [16]). In this paper, we solve (9)
inaccurately such that ||§;]] < A;, and the above two inequalities hold.
3. Global convergence

Under certain assumptions, we show that the sequence of inner iterations
converges to a point satisfying the second-order necessary optimality conditions.
We begin this section with the following two assumptions.

Assumption A. The function @*(v) is bounded below on  for every p > 0.
Assumption B. There exists a sufficiently small positive constant » such that
§TB;5 > r||3)%, Vic R and j=1,2, .

Remark 3.1. Under Assumption A, by the fact that Q#{(r) is continuously
differentiable, there exists a constant R > r, such that
IV:QUw)| <R, VveQ. (27)

For simplicity, we define two index sets as follows:
S={j:p; >w}and F={j:p; <w}.

Note that parameter value p is determinate according to every iterate. In
the remainder of this paper, we will write Q*(v;) = Q(v;) = Q; and D*(v;) =
D(l/j) = Dj.

Compared to the Armijo-type line search condition Q*(v; + as;) < Q*(v;) +
(5ag]Tsj, an important feature of nonmonotone technique (14) is that it does not
restrict a monotonic decrease of the objective function value at each iterate.
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Lemma 1. Let {v;} be the sequence generated by Algorithm 1. Then

Qi1 < Djp (28)
holds for all j.

Proof. Due to definition of D; ( 15), we obtain
Dip1 = Qj4r = nDj+ (1 -mQj11 — Gjn
= (D; — Qj41). (29)

Inequalities (25) and (26) imply that ¢;(0) — ¢;(s;) > 0 and 87 g; < 0 if the
algorithm does not terminate or converge. If j € 9, i.e., p; > w, then D; —
Qj+1 > 0. Otherwise, the nonmonotone line search (17) is performed, this
process still leads to D; — @41 > 0. Thus (28) holds. 0l

Next, we show that Algorithm 1 is well defined. It is enough to prove that
there exists an integer i; such that the line search (17) holds.

Lemma 2. Assume that sequence {v;} is generated by Algorithm 1. Then line
search (17) terminates in finile steps, i.c., there exists an integer i; such that
the line search (17} holds, for any j € F.

Proof. Suppose first, for the purpose of deriving a contradiction, that there
exists § € F' such that

Q(v; +&'35) > D(vy) +6£'9] 35, V.
Using the fact D(v;) > Q(v;), we obtain
This inequality leads to
Qv +£'35) — Q)
g
Since Q(v;) is differentiable, taking limit with ¢ — oo, we have
978 > 697 55 (30)
Recall that 6 € (0,1/2), thus (30) implies that §] §; > 0. However, we have from

(26) that g} 3, < 0. Therefore, for any j € F, there exists ¢; > 0 such that (17)
holds. g

o 5575
> 645 8-

Now we proceed to establish a lower bound for stepsize «;. To this end, we
need to use Assumption B.

Lemma 3. Assume that Assumptions A and B hold, sequence {v;} is generated
by Algorithm 1. Then the stepsize oy satisfies

(L —d)er

ay > R

(31)
forallj e F.
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Proof. If the line search is performed, it means that trial step is not accepted,
the iterate is updated by v;41 = v; + «;5;. Using the definition of line search
(17), we obtain

Qvs + & ay8;) > D(vy) + 06~ s 3,
Again using the fact D(v;) > Q(v;), we have
Qv + €& ay85) > Qvy) + 06 g 85 (32)
Due to Taylor’s expansion, we obtain
1 . P DU PP .
Qv+ &1 85) = Qvy) + € " aygl 45 + 5€ 2028 V2Q(1)8;,  (33)
where ¢; € (vj,v; + £ a;8;). Tt is clear from (32), (33) and Remark 3.1 that
1 AT A 1 .. 1 .
669785 < € y9) 85 + 3¢ a3 R|135]17,

this inequality yields

S D)y < g€ RS (34
On the other hand, we deduce from (25) that
83(0) — 95(55) =~ — 367 By3; > 0. (35)
Combining (34) and (35), we obtain
(1-0)8] B;3; <& ‘o RIS, (36)
Thus, we have from Assumption B and (36) that (31) holds. O

Recall that {Bj} is bounded, here we define a sequence

— B 1. 7
Gj =1+ max || Bi| (37)

This sequence will be used in our theoretical discussion.
In the following lemma, we find that sequence { Dy} is monotonically decreas-
ing.

Lemma 4. Suppose that Assumption A holds and {v;} is a sequence generated
by Algorithm 1, then sequence {Dy} is monotonically decreasing. Furthermore,
if sequence {v;} does not converge, i.e., there exists a constant € > 0 such that

1951 = €, v j. (38)
Then sequence {D(v;)} satisfies
D(vj41) — D(v;) < —(1 = n)pemin{A;, ¢/G;} (39)

for all j, where ¥ = min{wr, %ﬁ}‘
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Proof. We will finish the proof by considering two cases.
Case 1. j € S, we have from (16) and (25) that

D(vj) ~ Q(rj41) > w(65(0) — ¢;(3;)) > wrl|g; || min{ A, 130/ 11B51}

Thus

Q(vj+1) < D(vy) — wr|gl| min{Ay, |g;1/11B;1}- (40)
Jase 2. j € F| it follows from (17), (26) and (31) that

Qvjr1) < Dly) — draylg;l min{A,, 13;1/11B;1}
dr(1—4 X .

OO o min{ s g/ IB (a0
Let ¢ = min{wr, w%‘s)ﬁ}. Combining (40) and (41), we have

Qi) < D(vy) — llg;l min{ Ay, 1;1/11B;1}- (42)
Due to the definition of D; 4, (15) and inequality (42), we have

< D(y)

Dy = nDj+ (1 —nQj+1
< nDj+ (1= n)(D; — )45 min{A;, 19;1/11B;11})
= Dj — (L— gyl min{A;, |;11/11B;11}- (43)

Inequality (43) implies that sequence {D,} is monotonically decreasing. Thus,
(43}, (38) and (37) give

Djy1 = D;

IA

~(1 = m)ellg; | min{Ag, 1d511/11B; 11}
—(1 = n)¢emin{A;,€/G;}.
This completes the proof. O]

IA

The monotonicity of {D;} leads to the following important lemma.

Lemma 5. Suppose that Assumption A holds, if sequence {v;} does not con-
verge, i.e., there exists @ constant € > O such that (38) holds. Then
lim min{A,,¢/G;} = 0. (44)
=00

Proof. Since {Q;} is bounded below, we have from Lemma 1 that {D;} is also
bounded below. Inequality (39) leads to

X o0
Y (D(vj11) = D(vy) <> —(1 = pemin{A;, ¢/Gy}.
j=1 j=1
Consequently,
X
Z(l — nypemin{A; ¢/G;} < co.
=1

It is obviously that (44) holds. U
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In the following lemma, we show that there exists a lower bound for Aj, for
jer.

Lemma 6. Suppose that sequence {v;} is generated by Algorithm 1, if sequence
{v;} does not converge, that is, there exists a constant ¢ > 0 such that (38)
holds. Then

A; > €/Gy (45)
is satisfied for j € F sufficiently large .
Proof. Using (32), the Taylor’s expansion (33) and Remark 3.1, we obtain
0 > Q) — Qv+ & ay8) + 06 a4y 35

_ T 1_ .
> £ 1(1*5)%9?5;'“51%5 a2]|3,]1%.

Which, together with (26) and (37), we have

_ . 1_ .
0 > & '(1—0d)rea; min{A;,¢/G;} — S B o518 w1 — w5l
_ . 1_
£ a;[(1 - 6)remin{A;, ¢/G;} - SR YAy — ]

v

= oy A[(1 - 8)remin{l, e¢/(A,;G;)} — %R§_1||Vj+1 — vl

This inequality leads to

g — vl > 22 mings, 8,6 (16)
Assume that (45) does not hold, i.e.,
Aj; <¢€/G,. 47
Then it follows from (46) that
lvjr1 — vl > 2(1 = 8)7e/R. (48)
Due to Step 5 of Algorithm 1, we have
Vi1 = vl = egl13511 < Ay, VjeF (49)

Now, (47), (48) and (49) imply that
E/Gj > Aj > 2(1 45)7‘6£/R,
this relation contradicts (44). Thus (45) holds. O

Based on Lemma 5 and Lemma 6, we will show that there exists a lower
bound for the trust region radius A;, for all sufficiently large j.
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Lemma 7. Suppose that sequence {v;} is generated by Algorithm 1, if there
exists a constant € > 0 such that ||§;|| > €. Then

Aj > € / Gj (50)
for oll sufficiently large 3.
Proof. 1f there are an finite number of unsuccessful iterations, namely, F is a
finite set, then there exists a positive constant A* such that A; > A™ for all j.
Note that (44) implies that lim;_.. 1/G; = 0. Hence (50) holds for all large j.
Now, we assume that F' is an infinite set.
(1): If j € I, by Lemma 6 there exists a j € I such that (50) holds for j € F

and j > j. N N
(2): IfjeSand j>j, let j=max{i:ic F and i < j}. The definition of j
leads to

A3 > E/Gi (51)
and

j+scS (52)

forall s =1,2,---j — j. Using (51), (52) and the rules for updating trust region
radius (21), we have

A§§A5+1§A3+2§§AJ (53)
Relations (53) and (51) suggest that
AJ‘ > C/G;
Since j > j, by the monotonicity of {G;}, we have G; > G; and hence e/ G5 >
¢/G;. Thus (50) holds. 0

Based on these lemmas, we now give an important theorem for Algorithm 1.
Since {B;} is bounded, it follows that {G;} satisfies

$°1/6; - oo, (54)
el
where G is defined by (37).

Theorem 1. Suppose that Assumption A holds. Then the sequence {v;} gener-
ated by Algorithm 1 satisfies

lim inf |3, = 0, (55)
300
or some {v;} satisfies the termination criterion and the algorithm terminates.

Proof. ¥or the purpose of deriving a contradiction, assume that (55) does not
hold, i.e., there exists a constant € such that ||[g;|| > e. It follows from (50) that
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for sufficiently large j. On the other hand, It is clear from (39) that
(1 —n)gemin{A;,e/G;} < D; — Djpa. (57)
Combining (56) and (57), we obtain

(oo}

Y (L-me /G <> (D; — Di)-

Jj=1 Jj=1
Noticing that Q1 = D1, Q; < D; and @; is bounded below, we have

o

> 1/G; < oo (58)
j=1
Relation (58) contradicts (54). Hence (55) holds. 0

We now prove that the algorithm globally converges to a point satisfying the
second-order necessary optimality conditions. We first present three important
propositions, they are similar to the corollaries given in [9)].

Proposition 1. Assume that the iterates {x;} generated by Algorithm 1 lie in
a compact region, and that the sequences {M;} and {M j”l} are bounded. Then
(a) {W;}, {W{l}, {T;} and {Tj_l} are bounded;
®) 3= O(lg;1); and
(©) B; = O(||Bjl) with Cmin(B;) = O(Cmin(B;))-

Proof. Similar to the proof of Corollary 4.2 in [9]. 0

Proposition 2. Assume that the iterates {x;} generated by Algorithm 1 lie
in a compact region. Then the sequence {(x;,\;)} lies in the interior of a re-
gion within which g(x, \) is uniformly continuous. Moreover, Q(z, ) is also
uniformly continuous in the same region and hence {B;} is bounded.

Proof. Similar to the proof of Lemma 4.6 in [9]. O

Proposition 3. If s; satisfies the trust region termination condition (13) then
—¢(s;) > 370 A7

Proof. Similar to the proof of Corollary 4.3 in [9]. O

Under the assumption that the iterations lie in a compact region, Proposition
1 implies that it is no longer necessary to distinguish between g; and §; or B;

and B; in the convergence results.

Theorem 2. Assume that sequence {z;} generated by Algorithm 1 lies in a
compact region, and that lim; . ||Bj — V2Q(v,)|| = 0. Suppose that for each j,
the step s; satisfies the termination criteria (13). Then either some v; satisfies
the termination criteria or imsup;_, ., Cmin(V2Q(v4)) > 0.
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Proof. Tt follows from (54) that lim;_,o, 1/G; # 0. Thus we deduce from Lemma
5 that lim; oo A; = 0, this relation implies that p; < @ for all j sufficiently
large. Otherwise, by the updating rules of Algorithm 1, it follows Aj 1 > 4y,
it is not possible for A; — 0.

Due to the definition of p; and the parameter w ¢ (0,1), relation p; < @
leads to D(v;) — Q(v; + s;) < —¢(s;), that is, 0 < Q(v; + s;) — D(v;) — ¢(s;).
Using the monotonicity of D(v;) and the fact that Q(v;) < D(v;), we obtain
that Q(v; + s;) — D(v;) < Q(v; + s;) — Q(v;). Consequently, we have 0 <
QU +85) — D(vs) — ¢(s;) < Qs + 55) — Qv) — d(s;).

Suppose, for the purpose of deriving a contradiction, that {o;} is bounded
away from zero. By Taylor’s theorem,

|Q(v) + s5) — D(v5) — ¢(35)]
<|Q(v; +55) — Qvy) — ¢(s5)]

= 1QU; +53) ~ QUy) — g'sy — 5T By
s P mas, IV2Q(; + 65) — VQU)I + 1B = V*Qu)I)

IN

S5 P A3 max 9%, + 55) — VW) + B, ~ V*Q(w)I).

Dividing both sides of this expression by —¢(s;) and using Proposition 3 yields

;g2 2 : o
(gmax, IV2QUs + 557 = V2QQ5)] + 1B; = T* Q).

TO; 0<¢

lp; — 1] <

here we use equality | — p; + 1| = |p; — 1|. Using the assumption that sequence
{0;} is bounded away from zero, the fact that {Tj_l} is bounded and V2Q(v)

is uniformly continuous, and noticing that lim; .« || B; — V*Q(v;)|| = 0, we can
deduce from the abave inequality that

lim |p; — 1] =0.
J—o0

This result contradict p; < w for all j sufficiently large. Thus the assumption
that {o,} is bounded away from zero is not true. Since subproblem (9) is solved
inaccurately, 0; > —Cmin(Bj), it must hold that limsup;_, o Gmin(Bj) > 0. Due
to | B; — V2Q(v;)|| — 0, it follows that limsup;_ ., (min(V2Q(5)) > 0. O

Theorem 1 is a crucial property of Algorithm 1, which gives us major impli-

cations to establish the convergence of g;. Before we establish the main result,
we give an important proposition concerning the convergence of F#.

Proposition 4. Assume that the sequences {M;} and {M; Y are bounded. If
{flx;)} is bounded below, {c;(x;)} is bounded above for all i € I, and Jf (A—
73) = O(IA; — D), then g; = O(F* (25, A5)l)).-

Proof. Similar to the proof of Theorem 4.1 in [9]. O
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Now, our purpose is to show the main convergence result that lim; . ||g;|| =
0 holds based on the result liminf;_, ||g;|| = 0. To this end, we give further
lemmas, partial proof techniques motivated by [9].

Lemma 8. Let {v;} be the sequence of iterates generated by Algorithm 1 and
let {a;} be the corresponding sequence of step lengths. Then

D(vj) — D(vj + @j8;) > Samin |35 ]| min{A;, 113;]1/11 3511},
where amin = (1 — 0)ér/R.

Proof. Tt follows from (17) and (31) that D(v;) — Q(vj + a;8;) > —60mind] 35,
which together with the fact D(v;j41) > Q(vj41) suggest that D(v;) — D(v; +
a;s;) > Aaaminnggj‘ Thus, it follows from (26) that conclusion holds. O

Lemma 9. Assume thot sequence {z;} generated by Algorithm 1 lies in a com-
pact region. Choose g1 > p2 > 0. For every gs there is an ly sufficiently large
that Z?;; lajsill < o3 for all indices ¢ > p > lo for which |g(vp)l| > o1,
lg(v;)|| > o2 for consecutive indices j =p,p+1,--- ,¢—1, and ||g(vg)|| < o2.

Proof. Note that if {|g(v;)|| > o1 holds only finitely often, then the lemma is
trivially true. Furthermore, as liminf; .. [|g(v;)|| = 0, it must hold that for
every iteration p such that ||g(vp)|| > @1, there must exist a subsequent iteration
g such that llg(vy)|l < 2.

Let & = 2ain. Lemma 8 implies that for every index in the set A = {j :
a; > G}, we obtainD(v;) — D{v; + ays;) > hoar|g; | min{A,, |,1/]|B}. Let
Clp)=1{j:j=p and llgw;)| > os}. Because 3202, (D(v;) — Dlvjs1)) < oo.
Therefore, > ||g(v;)|| min{A, ||g;]|/llB;|l} < oo. By proposition 1, g; =

JEANC (p)
6(g;1) and B; = (| B;[)). As {B;} is bounded, and [lg(u,)]| > g2 for j € C(p),
it follows that

Y Aj<c. (59)

FEANC(p)

Let J denote the sequence of iteration indices {p,p+1,---,¢—1}. Let {jx}}_;
denote the subsequence of J with indices in A. We partition J into v + 1
nonoverlapping subsequences P, Py,---, P, with Py = {p,p+ 1, - ,41 — 1},
Py = {jkajk+17 to ’jk+1*1}, k= 1,2, ,v-1 and Py = {jvvjv+]-7 toT aqf]-}'
Note that if the first index p is in A, then P, is empty. Otherwise none of the
indices of Py will be in A. For k > 0, the sequence Py starts with an index in
A, followed by a (possibly empty) sequence of indices that are not in A. These
definitions allow us to write the quantity to be bounded as

D llegsill =Y Negsill + > > llassll. (60)
Jj=p

JjEPy k=1j€P;
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We now estimate the quantity >, p [lajs;[|. If the set Fy is empty, then
> jep, lagsill = 0. Otherwise, a; < & for every j ¢ Py and the rules for

updating the trust region radius give A; 41 < ¢1A;. This gives the sequence of
inequalities

> sl < 3 ad; <0y Y a)' < af L), < a2 A,

i€l jePly l—a 1-a
where Apax = Km<ax 1A Since & = 20unim = 2(1 — 8)&r/R, we can choose »
1501
sufficiently small and R sufficiently large, such that
1 1
65( 1—¢ )CZAmax < ‘2’93» (61)

for any g3 > 0.

v
We proceed to estimate the quantity > > |la;s;]|, we first consider the
k=1jEF
terms involving the indices in Py for k > 0. For j € Pg\{Jjx}, that is, for every
element of Py except the first, a; < & and the rules for updating the trust region
radius give Ay < 1A Thus

>4 <AJ&HZ (1) = T o Bt (62)

FE€P\{ 3k}
At iteration jg, it is possible that the trust region radius will increase, which
implies that the appropriate bound on Aj, 41 is Aj, 41 < c24;,. Therefore, we
have from (62) that
C C:
DA =85+ Y A <A+ ﬁAg’k =(1+ T%)Aj’“'
JePk JEP\ e} ! ' (63)
From the definition of P, we obtain
Z llajs;|| <
JEP FEP
Note that ji € ANC(p), (64) gives

ZZII% )ZA <( ) YA

k=1j€P; k=1 JEANC (p)
Consider the bound (59), p can be chosen suﬁi(‘ioutly large such that
( ) Y. Aj<s Q‘% (65)
JEANC(p)
Thus, we have from (61) and (65) that
q—1

Z a; syl = Z llojs;ll +Z Z llejs; || < Q3+ 03 03,

j=p jE€EFo k=1j€EP
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where ¢3 may be chosen to be arbitrarily small. (1
The following lemma concerns the limiting behavior of the gradient of the

barrier-penalty function.

Lemma 10. Assume that the sequence {z;} generated by Algorithm 1 lies in a

compact region. Then lim; .o ||VL(z;)| = 0.

Proof. Similar to the proof of Lemma 4.12 in [9]. a

The merit function Q(z, ) may be written as Q(z,\) = L(z)+¥(z, ), where
L(z) is the barrier-penalty function (2) and ¥(xz, \) is the proximity term

W, ) — uz(ln(a(?)\i) LR C;(-’L'))\i) n QL Z(Cz(x) +un)?.

icl

The next lemma concerns the behavior of this proximity term when the norm
of the merit function gradient behaves nonmonotonically in the limit.

Lemma 11. Assume that liminf;_ . ||g(v;)|| = 0 and that there exists a positive
number g1 such that the relation ||g(v;)|| > o1 holds infinitely often. Then there
exists an p > 0, a positive ps sufficiently small and an index ly sufficiently
large that if ¢ > p > lo with ||g(vg)ll > 01 > 02 > |lg(vp)ll, then ¥(zy, Ag) >
V(zp, Ap) + 2.

Proof. Similar to the proof of Lemma 4.13 in {9]. O

Theorem 3. Suppose that the iterates {x;} generated by Algorithm 1 lies in a
compact region. Then either some v; satisfies the termination criteria and the
algorithm terminates or im;_. || g(v;)|| = 0.

Proof. We first show that Q(v;) is close to D(v;) for j sufficiently large. Due to
the definition of D(v;), we obtain
D(vj1) — Qi) =n(D(v;) — D(vj41))- (66)
Since D(v;) decreases monotonically and bounded below, equality (66) suggests
that Q(v;) will not bounded away from D(v;) too much for j sufficiently large.
That is, Q(v;) is almost forced to decrease monotonically for j sufficiently large.
Now, assume that ||g(v;)|| does not converge to zero. Let o1 > 0 be a constant
for which ||g(v;)|| > o1 infinitely often. Given any g2 such that g1 > g2 > 0,
let p be any index such that ||g(v,)|| < @2, and let g denote the next index
greater than p with satisfying Q(vy) < Q(vp) and ||g(vg)|| > 1. Similarly, let
7 be the next index greater than g such that Q(v,) < Q(vq) and ||g(vr)[| < e2.
Based on this definitions, we can apply Lemma 11 to assert that for p sufficiently
large, the proximity term satisfies (x4, Ay) > ¥(xp, Ap) + 0. Note that Q(v,) <
Q(vp), it must hold that L(x,) < L(zp) — 0. By Lemma 9, we may choose p
large enough such that }77_ = |la;s;|| arbitrarily small. Thus, since L(z) is
uniformly continuous, it must hold that for all sufficiently large choices of p,
|L(z,) — L(z,)| < 10 and hence L(z,) < L(zp) — 50. This implies that each
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time ||g(v;)| increases from a value less than gy to a value greater than p; and
then decreases again to a value less than go, the barrier-penalty function L(x)
must decrease by at least a constant factor. As L(z) is bounded below in a
compact region, the value of {{g(v;)| can exceed p; only finitely often. This
leads to lim;_.« ||g(v;)|| = 0 as g; is an arbitrary positive constant. O

4. Concluding remarks

We presented a primal-dual interior point nonmonotone trust region algo-
rithm for solving asset liability management model whose deterministic equiva-
lent problem formulated as (1). A primal-dual interior point algorithm for solv-
ing multistage stochastic programming problems through their corresponding
unconstraint optimization problems has been discussed in Zhao [18], but their
algorithm was designed for multistage stochastic convex programming. Our al-
gorithm was designed for general nonlinear multistage stochastic programming
problems. We focused on discussing the theoretical results of the inner itera-
tions. We will further study the rules for updating ux and the convergence of

the outer iterations, as well as numerical tests on real large-scale asset liability
problems.
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