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AN ACTIVE SET SQP-FILTER METHOD

FOR SOLVING NONLINEAR PROGRAMMING

Ke Su, Yingna Yuan, and Hui An

Abstract. Sequential quadratic programming (SQP) has been one of

the most important methods for solving nonlinear constrained optimiza-
tion problems. Recently, filter method, proposed by Fletcher and Leyffer,

has been extensively applied for its promising numerical results. In this

paper, we present and study an active set SQP-filter algorithm for in-
equality constrained optimization. The active set technique reduces the

size of quadratic programming (QP) subproblem. While by the filter

method, there is no penalty parameter estimate. Moreover, Maratos ef-
fect can be overcome by filter technique. Global convergence property of

the proposed algorithm are established under suitable conditions. Some
numerical results are reported in this paper.

1. Introduction

In this paper, we consider the following nonlinear inequality constrained
optimization problem:

(P ) min f(x)

s.t. ci(x) ≥ 0, i ∈ I0 = {1, 2, · · · ,m} (1)

where x ∈ Rn, f : Rn → R and ci(i ∈ I0) : Rn → R are assumed to be twice
continuously differentiable.

It is well known that the sequential quadratic programming(SQP) method
is one of the most efficient methods to solve the problem (P). Because its
superlinear convergence rate, it has been widely studied by many researchers
[2, 3, 8, 13, 14].
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The SQP method generates a sequence {xk} converging to the desired solu-
tion by means of solving the quadratic programming problem

min ∇f(xk)T d+
1

2
dTBkd

s.t. ci(xk) +∇ci(xk)T d ≥ 0, i ∈ I = {1, 2, · · · ,m} (2)

where Bk ∈ Rn×n is a symmetric positive definite matrix, which is supposed
to be an approximate Hessian of Lagrangian

L(x, λ) = f(x) + λT c(x).

The iteration then has the form

xk+1 = xk + tkdk

where dk solves (2) and tk is a step length chosen to reduce a merit function for
(1). In majority work, the merit function is normally a penalty function such
as l1 exact penalty function. It has been proved that SQP is global convergent
(see[9, 11, 13, 15, 16]).

It is obviously that for large scale problem, the memory requisite for each
QP subproblem may be very large if the original problem is large (with great
number of constraints). So, the active set technique is always used to tackle it so
that the constraints are fewer. In direct observation, the non-active constraints
have no effect on the problem in the neighborhood of the solution. Let x∗ be
a local solution of the original problem (P), the active set at x∗ is defined by

A(x∗) = {i|ci(x∗) = 0}.
There are two obvious advantages for using active set technique. One is decreas-
ing the number of constraints in original problem, the other is the reduction
of possibility of the inconsistent of the QP subproblem. Liu[11] proposed an
SQP method based on active set. To get the step length, a penalty function
as a merit function is introduced in [11]. But the penalty parameter estimate
could be problematic to obtain, then in 2002, Fletcher and Leyffer proposed
a filter method without penalty function for solving nonlinear programming
and it recently attached importance to. Because of its promising numerical
results, filter method has been combined with trust region method[12, 17],
SQP approach[4, 5], bundle technique[6], interior point strategy[18], line search
technique[19, 20] and pattern search method [1].

In this paper, motivated by the above ideas, we propose an active SQP-
filter method by combining the subproblem proposed in Liu[11] and the filter
technique. The method has the following merits: starts from an arbitrary
initial point; requires to solve only one QP problem with only one subset of
the constraints; and need not to consider the penalty parameter. In the end,
under some conditions, we obtain the global convergence and prove that the
algorithm either terminates at a Karush-Kuhn-Tucker(KKT) point within finite
steps or generates an infinite sequential whose every accumulation point is a
KKT point.
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This paper is organized as follows. In section 2, the filter method is intro-
duced. A new SQP-filter method is given in section 3. In section 4, the global
convergence theory for the method is presented, and some numerical examples
are given in the last section.

2. The notion of a filter

To avoid using the classical merit function with penalty term, in which
the penalty parameter is difficult to choose, we adopt the filter technique.
The acceptability of steps is determined by comparing the constraint violation
and objective function value with previous iterates collected in a filter. The
new iterate is acceptable to the filter if it is feasible or the objective function
value is sufficiently improved in compared to all iterates bookmarked in the
current filter. The promising numerical results led to a growing interest in
filter methods in recent years.

In this work, define the violation function h(c(x)) by

h(c(x)) = ‖c(−)(x)‖∞ (3)

where c
(−)
i (x) = min{0, ci(x) : i ∈ I}.

To balance the objective function and the constrained function, we substitute
p(x) for f(x) as following:

p(x) = f(x) + σh(x)

where σ is a constant and the value of σ is not required to be very large. If
σ = 0, it is the traditional filter method. If σ < 0, the accepted conditions
are relaxed. So, with the appropriate choice of σ, the Maratos effect can be
overcome.

It is easy to see that h(x) = 0 if and only if x is a feasible point. So, a trial
step should reduce either the constraint value h or the function value p. To
ensure sufficient decrease of at least one of the two criteria, we say that a point
x1 dominates a point x2 whenever

h1 ≤ h2 and p1 ≤ p2 (4)

where hi = h(c(xi)), pi = p(xi), for i = 1, 2.
All we need to do is to remember iterates that are not dominated by any

other iterates using a structure called a filter. A filter is a set F of points in
Rn such that no point dominates any other.

In practical computation, we do not wish to accept xk+dk if it is arbitrarily
close to that of xk or that of a point already in the filter. Thus we set a small
”margin” around the border of the dominate point of the (h, p) space in which
we shall also reject trial points. Formally, we say that a point x is acceptable
to the filter if and only if

h(c(x)) ≤ βhj or p(x) ≤ pj − γhj (5)
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for all xj ∈ F , where 0 < γ < β < 1 is close to zero. As the algorithm
progresses, we may want to add a point x to the filter. If a iteration xk is
acceptable for F , we do this by adding the point xk to the filter and removing
from it every other point xj such that both

hj ≥ hk and pj − γhj ≥ pk − γhk. (6)

We also refer to this operation as ”adding xk to the filter”. We note that if
a point xk is in the filter or is acceptable for the filter, then any other point x
such that

h(c(x)) ≤ βhk and p(x) ≤ pk − γhk (7)

is also acceptable for the filter and xk.

3. An active set SQP-filter algorithm

Let x ∈ Rn be the current iteration point and λ = (λ(1), λ(2), · · · , λ(m)) ∈
Rm be an approximate multiplier. Define z = (x, λ), let ε > 0 is a scalar.
Define the ε-active set at x corresponding to λ as following:

I(z, ε) = {i : ci(x) ≤ λ(i) + ε}. (8)

The QP problem that we use as a subproblem is defined by Q(z,B):

Q(z,B) : min ∇f(x)T d+
1

2
dTBd

s.t. ci(x) +∇ci(x)T d ≥ 0 i ∈ I(z, ε). (9)

We use the following signals as that in [11]:

S(z, ε) = {d : ci(x) +∇ci(x)T d ≥ 0 i ∈ I(z, ε)}, (10)

S0(z, ε) = {d : ci(x) +∇ci(x)T d ≥ 0 i ∈ I0}, (11)

where I0 = {1, 2, · · · ,m}. Then S0(x) ⊂ S(z, ε) since I(z, ε) ⊂ I0. We can see
that if there exists a vector v ∈ Rn such that

∇ci(x)T v > 0, i ∈ I(z, ε). (12)

Then S(z, ε) 6= ∅ follows. If z is a KKT point of the problem (P) and ε = 0,
then it is precisely the Mangasaria-Fromovitz constraint qualification (MFCQ)
at x. Moreover, we can assume that ∇ci(x) are linear independent, which is
stronger than (12).

Under the above assumption, if B is positive definite, the convex program-
ming Q(z,B) has an unique solution d. Let λI = {λ(i) : i ∈ I(z, ε)} is a
multiplier vector corresponding to d, and λ(i) = 0 for i ∈ I\I(z, ε), then we call
λ = {λ(i) : i ∈ I0} the multiplier corresponding to problem Q(z,B).

Lemma 3.1. ([11]) For any z = (x, λ) ∈ Rn+m, let p(z, ε) = min{ci(x)/‖∇ci
(x)‖2 : i ∈ I0 \ I(z, ε)} and define the sets

Ŝ(z, ε) = {d : ci(x) +∇ci(x)T d ≥ 0, i ∈ I(z, ε) and ‖d‖2 ≤ p(z, ε)}, (13)

Ŝ0(z, ε) = {d : ci(x) +∇ci(x)T d ≥ 0, i ∈ I0 and ‖d‖2 ≤ p(z, ε)}. (14)
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Then we have Ŝ(z, ε) = Ŝ0(z, ε).

Lemma 3.2. ([11]) Suppose that B is positive definite and d+ is the unique
solution of problem Q(z,B). There always exists a positive constant δ such that
for 0 ≤ τ ≤ δ,

ci(x) +∇ci(x)T (τd+) ≥ 0 i ∈ I0 \ I(z, ε), (15)

ci(x) +∇ci(x)T (τd+) ≥ (1− τ)ci(x) i ∈ I(z, ε). (16)

Furthermore,
h(c(x) +∇c(x)T d) ≤ (1− τ)h(c(x)). (17)

In above Lemma, let Ī(z, ε) = {i ∈ I0 \ I(z, ε) : ∇ci(x)T d+ < 0}, then

δ = min{ min
i∈Ī(z,ε)

−ci(x)

∇ci(x)T d+
; 1}

is satisfied (15)(16) and (17).
Let d = τd+, then

ci(x) +∇ci(x)T d ≥ 0 i ∈ I0 \ I(z, ε), (18)

τci(x) +∇ci(x)T d ≥ 0 i ∈ I(z, ε). (19)

Lemma 3.3. ([5]) Consider sequences {hk} and {pk} such that hk ≥ 0 and pk
is monotonically decreasing and bounded below. Let constants β and γ satisfied
0 < γ < β < 1 for all k,

either hk+1 ≤ βhk or pk+1 ≤ pk − γhk (20)

then hk → 0.

Lemma 3.4. ([5]) Consider an infinite sequence of iterations on which (hk, pk)
is entered into the filter, where hk > 0 and {pk} is bounded below. It follows
that hk → 0.

Algorithm A

Step 0: Initialization:
Given x0 ∈ Rn, λ0 ∈ Rm, λ0 ≥ 0. B0 is a symmetric positive definite matrix.

ε, ε0 > 0, 0 < γ < β < 1, k = 0;
Step 1: Solve Q(zk, Bk) to get the solution d′k. If ‖d′k‖ ≤ ε, then stop;
Step 2: Let Īk = {i ∈ I0 \ I(zk, εk) : ∇ci(xk)T d′k < 0}, compute δ =

min{ min
i∈Ī(z,ε)

−ci(x)
∇ci(x)T d+

; 1} and set dk = δkd
′
k;

Step 3: Let l = 0, αk,l = 1;
Step 4: x̄k = xk + αk,ldk, if x̄k is acceptable to the filter, then set αk =

αk,l, xk+1 = x̄k and go to step 6;

Step 5: αk,l+1 =
αk,l

2
, l = l + 1 and go to step 4;
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Step 6: If gTk dk > − 1
2d
T
kBkdk, then add xk+1 to the filter. Update Bk to

Bk+1, λk+1 = λ
′

k, εk+1 = εk/2, set k = k + 1 and go to step 1.
We call step4-step5-step4 the inner loop and the whole cycle outer loop.

4. The global convergence properties

Just as in [1, 4, 5], our analysis of the algorithm are based on the standard
assumptions as follows.

Assumptions:
A1. The objective function f and the constraint functions ci (i ∈ I0) are

twice continuously differentiable.
A2. There exist two constants 0 < a ≤ b such that a‖d‖2 ≤ dTHkd ≤ b‖d‖2,

for all d ∈ Rn and all k.
A3. All points that are sampled by the algorithm lie in a nonempty closed

and bounded set S ⊂ Rn.
A4. If xk → x∗(k ∈ K), then there exists a vector v ∈ Rn such that

∇ci(x∗)T v > 0 i ∈ =(x∗, ε)

where =(x∗, ε) = {i : i ∈ I(zk, ε) for infinitely many k ∈ K}, K is an infinite
index set and ε is a positive scalar.

The assumption (A1) and (A3) are the standard assumptions. (A4) is the
sufficient condition for that Q(zk, Bk) is solvable, which is a weak condition
compared to the MFCQ conditions. Fletcher et.al [7] have showed that (A1)
and (A3) together directly ensure that, for all k

f(xk) ≥ fmin and 0 ≤ h(c(xk)) ≤ hmax
for some constants fmin and hmax > 0. Thus we see that the sequence
{p(xk)} is bounded below, and we can also assume there exists ρ > 0, such
that h(c(xk)) ≤ ρ. Also, let us assume, by (A1) and (A3), without loss the
generality, that f(x),∇f(x), c(x),∇c(x) are bounded on S.

Lemma 4.1. Suppose the standard assumptions hold. If (d′k, λk+1) is a KKT
point of Q(zk, Bk), then ‖d′k‖ and λk+1 are bounded.

Proof. Since {xk} lie in a bounded set, there exists a point x∗ such that xk →
x∗ (k ∈ K), where K is an infinite index set. By (A4), it follows

ci(x
∗) +∇ci(x∗)T d∗ ≥ 0 i ∈ =(x∗, ε) (21)

for some d∗ ∈ Rn.
Note that the functions c(x),∇c(x) are continuous, we thus obtain that,

there exists a k0 > 0, for k > k0,

ci(xk) +∇ci(xk)T d∗ ≥ 0 i ∈ =(x∗, ε). (22)

By the definition of =(x∗, ε), we can see there is a constant k1 > 0, such
that =(zk, εk) ⊂ =(x∗, ε) for k > k1. Thus d∗ is a feasible point of Q(zk, Bk)
for all k ≥ max{k1, k0}.



AN ACTIVE SET SQP-FILTER METHOD 299

The ‖d′k‖ is bounded follows by the assumption (A2).

Since λ
(i)
k+1 = 0 for i /∈ =(x∗, ε), we just need to show λ

(i)
k+1 (i ∈ I(zk, ε), k ∈

K) is bounded in order to prove the conclusion.
By the KKT condition of Q(zk, Bk), we then obtain

gk +BTk d
′
k − λTk+1Ak = 0, λTk+1(c(xk) +Akd

′
k) = 0 (23)

where Ak = (∇ci(xk))T : (i ∈ I(zk, ε)).
We then get the desired result by the standard assumptions and the above

explanation. �

Without loss of generality, according to the above illustration and Lem-
mas, we can suppose there exist M,ρ > 0 such that ‖λk+1‖ ≤ M, ‖f(x)‖ ≤
M, ‖∇f(x)‖ ≤M, ‖c(x)‖ ≤M, ‖∇c(x)‖ ≤M and ‖dk‖ ≤ ρ.

Lemma 4.2. Under the standard assumptions, the inner loop terminate in
finite times.

Proof. Suppose the point xk is the last point that entered into the filter. We
will show that xk+αdk will be accepted by the filter for sufficiently small α > 0
in the following two cases.

Case I: h(c(xk)) = 0
It means that xk is a feasible point of the problem (P) and hence dk = 0 is

the solution of Q(zk, Bk), so by the definition of h(c(xk)), we have

h(c(xk + αdk)) = max{0,−ci(xk + αdk)}
= max{0,−ci(xk)− α∇ci(xk)T dk + o(α)}
= max{0,−α(ci(xk) +∇ci(xk)T dk)− (1− α)ci(xk) + o(α)}
= 0. (24)

We thus obtain h(c(xk + αdk)) ≤ βh(c(xk)).
Together with (24), xk +αdk will be therefore accepted by filter because the

definition of dk and

p(xk)− p(xk + αdk) = f(xk)− f(xk + αdk) (25)

= −α∇f(xk)T dk + o(α)

≥ α

2
dTkBkdk + o(α) > 0. (26)

Case II: h(c(xk)) > 0
By the intermediate value of Taylor’s theorem, we have

ci(xk + αdk) = ci(xk) + α∇ci(xk)T dk +
α2

2
dTk∇c2i (y)dTk (27)

where y denotes some point on the line segment from xk to xk+αdk. It follows
from the definition of h(c(xk)) and assumption (A3), that

h(c(xk + αdk)) ≤ α2

2
‖dk‖2M ≤

α2

2
ρ2M. (28)
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Define τk = min
xj∈F

h(c(xj)). It is convenient to get τk > 0 by the construction

of the algorithm. So, if α2 < 2βτk
ρ2M , we obtain

h(c(xk + αdk)) ≤ βτk ≤ βh(c(xj)) (29)

for all points xj in the filter. Hence, the Lemma holds for sufficiently small
α. �

We are now in a position to state the global convergence of our algorithm.

Theorem 4.3. Suppose there are infinitely many points entered into the filter.
Then lim

k→∞
h(c(xk)) = 0.

Proof. If h(xk) = 0, then xk is a feasible point. By the algorithm, we have
gTk dk + 1

2d
T
kBkdk ≤ 0. It follows that xk is not entered into the filter. So,

h(k) > 0. Hence, by Lemma 2 and together with the fact that {p(xk)} is
bounded below, we obtain lim

k→∞
h(xk) = 0. �

Theorem 4.4. Suppose there are finitely many points entered into the filter.
Then h(c(xk)) = 0.

Proof. The result is obvious from the algorithm. �

Theorem 4.5. Assume the standard assumptions hold and {xk} is an infinite
sequence generated by algorithm. Then any accumulation point of {xk} is a
KKT point of the problem (P).

Proof. Because {xk} lie in a bounded set S, there must exits x∗, such that
xk → x∗ (k ∈ K), which K is an infinite index set. By the algorithm, we prove
the theorem in the following two possible cases:

Case I: There are infinite many points entered into the filter.
In this case, by the algorithm, we have K1 = {k ∈ K|∇f(xk)T dk > − 1

2d
T
k

Bkdk} is an infinite index set. Also from Theorem 4.3, we get h(c(xk)) →
0, (k ∈ K1). So, x∗ is a feasible point. Suppose by contradiction that x∗

is not a KKT point, and if we assume there exists a set K2 ⊂ K1 such that
‖dk‖ → 0 (k ∈ K2), then it is easy to see x∗ is a KKT point. Hence, without
loss of generality, we suppose that ‖dk‖ > ε for some constant ε > 0. By the
definition of dk, ‖dk‖ = ‖δkd′k‖ ≤ ‖d′k‖, where 0 < δk < 1, d′k is the solution of
Q(zk, Bk), then ‖d′k‖ > ε. Following from h(c(xk)) → 0 , we can assume ∃k0,
for k > k0, k ∈ K1, it holds

h(c(xk)) ≤ a(2− δk)ε2

2M
≤ a‖d′k‖2(2− δk)

2M
≤ 2− δk

2M
dTkBkdk. (30)

While by KKT condition of Q(zk, Bk), it follows that

gk +Bkd
′
k + λTk+1Ak = 0, λTk+1(c(xk) +Akd

′
k) = 0, (31)
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where Ak = ∇c(xk)T . Together with (29), we obtain that for all k ∈ K1, k > k0,
it holds

gTk d
′
k = −(d′k)TBkd

′
k − λTk+1Akd

′
k

= −(d′k)TBkd
′
k − λTk+1c(xk)

≤ −(d′k)TBkd
′
k +Mh(c(xk))

≤ −(d′k)TBkd
′
k +

2− δk
2

(d′k)TBkdk

≤ −δk
2
dTkBkdk. (32)

So, gTk (δkd
′
k) ≤ − 1

2 (δkd
′
k)TBk(δkd

′
k), then gTk dk ≤ − 1

2d
T
kBkdk (k ∈ K1). Which

contradicts the definition of K1. It follows that x∗ is a KKT point.
Case II: There are finite many points entered into the filter.
That means it holds gTk dk ≤ − 1

2d
T
kBkdk < 0 for k sufficiently large, and K1

is a finite index set.
There must exists ᾱ > 0 such that

p(xk)− p(xk + αdk) ≥ −αgTk dk + o(α) ≥ ᾱ

2
dTkBkdk.

Because p is bounded below, for some integer i0, we have

∞ >

∞∑
k=i0

(p(xk)− p(xk + αdk)) ≥
∞∑
k=i0

aα

2
‖dk‖2.

Then
∞∑
k=i0

‖dk‖2 < +∞.

That means ‖dk‖ → 0. Hence x∗ is a KKT point of the problem (P). �

Lemma 4.6. ([11]) Under the assumption of Theorem 4.5, suppose that xk →
x∗ (k →∞),∇ci(x∗) (i ∈ I∗(x∗)) are linearly independent, λ∗ is the multiplier
associated with x∗. If εk → 0, the strict complementarity condition holds at z∗,
then I(zk, εk) = I∗(z∗) for all sufficiently large k.

5. Some numerical experiments

In this section, we discuss further refinements of the algorithm proposed
above to accommodate practical calculations, and give some numerical experi-
ments to show the success of proposed method. All examples are chosen from
[10].

(1) Updating of Bk is done by

Bk+1 =


Bk if sTk yk ≤ 0,

Bk +
yTk yk
yTk sk

− Bksks
T
kBk

sTkBksk
if sTk yk > 0.

(33)
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(2) The stop criteria is ‖dk‖ sufficiently small.
(3) An equality constraint c(x) = 0 exists in the original problem, it is most

easily handle as two corresponding inequalities c(x) ≤ 0 and c(x) ≥ 0,
and we can apply the above algorithm.

(4) The algorithm parameters were set as follows: γ = 0.05, β = 0.95, H0 =
I ∈ Rn×n, ε = 1e-06. The program is written in Matlab.

(5) Our method has no demand on the initial point. It can be either
feasible(HS3,5,31,33,35,44,113) or infeasible(HS15,23,41,45,53).

Numerical results for the algorithm are listed in Table 1.

Table 1

No. n m NI Filter-NI FV
HS3 2 1 5 10 0.0000
HS5 2 4 8 8 -1.9132
HS15 2 3 3 21 306.5000
HS23 2 9 7 8 0.0000
HS31 3 7 3 28 6.0000
HS33 3 6 2 5 -4.5858
HS35 3 7 7 7 0.1111
HS41 4 9 8 7 1.9259
HS44 4 14 6 6 -15.0000
HS45 5 10 2 8 1.0000
HS53 5 13 8 8 4.0930
HS113 10 8 16 36 24.3062

For each test problem, No. is the number of the test problem in [10], for
example, HS3 refers to the problem 3 in [10]. n refers to the number of variables,
m the number of inequality constraints, NI the number of iterates for our
algorithm, Filter-NI the number iterates for the traditional filter method, FV
the final value of the objective function.

The result in Table 1 indicate that our algorithm is quit effective compared
to the traditional filter method.
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