• Title/Summary/Keyword: Nonlinear optical film

Search Result 56, Processing Time 0.025 seconds

Green Generation and Investigation of Optical Properties of Amorphous BaTiO3 by Poling (폴링에 의한 비정질 BaTiO3 박막의 광학적 특성 조사 및 녹색광 발생)

  • Kim, Eung-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.39-44
    • /
    • 2020
  • BaTiO3 thin films was deposited on the slide glass by RF sputter. We have investigated the optical properties of BaTiO3 film after corona poling process. The transmission characteristics was very good over 80% in visible region and second order nonlinear optical coefficient depends on the poling conditions. The nonlinear optical coefficient of poled BaTiO3 films was about 1.15pm/V. The relaxation of second order nonlinear optical was remained around 60% of the initial value for a long time. In addition we have observed the green light generation from BaTiO3 films.

Observation of Multiple Filamentation in a-As$_2$S$_3$ film Using a Near-Field Scanning Optical Microscope (근접장 광학 현미경을 이용한 비정질 $AS_2$$S_3$ 박막에서의 다중 필라멘테이션 관찰)

  • 정희성;황성태;조규만
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.182-183
    • /
    • 2003
  • 자체집광(Self-focusing)현상은 매우 높은 집적도를 가지는 광기록매체의 제작에 응용 가능하기 때문에 많은 연구자들에 의해 광범위하게 연구되어왔다. 그동안의 연구에서는 자체집광에 대한 분석방법으로서 빛살의 벡터특성을 무시한 비선형 슈뢰딩거 방정식(nonlinear Schr dinger equation)을 이용하였는데, 이 경우 축상으로 대칭적인 빛살이 입사될 때 발생되는 다중 필라멘테이션(Multiple Filamentation)현상은 입사빛살에 첨가되는 random noise에 기인한다는 것이 유일한 해석방법이었다. (중략)

  • PDF

Synthesis and Characterization of Dendritic Nonlinear Optical Chromophore Containing Phenylene Attached with Bulky Alkyl Group

  • Choi, Jin-Joo;Kim, Kyoung-Mahn;Lim, Jong-Sun;Lee, Chang-Jin;Kim, Dong-Wook
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.59-64
    • /
    • 2007
  • Star-shaped, nonlinear optical (NLO) material was synthesized and its optical, thermal, and electro-optic properties were investigated. Three NLO-active dipolar chromophores containing a phenylene ring substituted with a bulky alkyl chain as a conjugation bridge were chemically bonded to the core of 1,1,1-tris(4-hydroxyphenyl)ethane to form a dendritic architecture. The chemical structure and purity of the chromophore were verified by NMR spectroscopy. The chromophore exhibited a broad absorption band centered at around 608 nm tailing up to 760 nm in toluene solution and also showed a discernible solvatochromic shift in more polar solvent. The chloroform solution of the dendrimer produced an absorption band with a red-shifted maximum as large as 28 nm when compared to that of the toluene solution. It was thermally stable up to $275^{\circ}C$ in a nitrogen atmosphere and had a glass transition temperature of $76^{\circ}C$. In a preliminary result, the polymer film containing the dendritic compound exhibited a shift of 19 pm/V taken at $1.55{\mu}$.

Synthesis and Properties of Novel T-type Nonlinear Optical Polyurethane Containing Tricyanovinylthienyl Group with Enhanced Thermal Stability of Dipole Alignment

  • Cho, You-Jin;Kim, Mi-Sung;Lee, Ju-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.424-430
    • /
    • 2011
  • A novel T-type polyurethane 7 containing 1-(2,5-dioxyphenyl)-2-(5-(1,2,2-tricyanovinyl)-2-thienyl)ethenes as NLO chromophores, which constitute part of the polymer backbone, was prepared. Polyurethane 7 is soluble in common organic solvents such as DMF and DMSO. It shows a thermal stability up to $270^{\circ}C$ from TGA thermogram with $T_g$ value obtained from DSC thermogram near $155^{\circ}C$. The second harmonic generation (SHG) coefficient ($d_{33}$) of poled polymer film at 1560 nm fundamental wavelength is $3.56{\times}10^{-9}$ esu. Polymer 7 exhibits a thermal stability even at $5^{\circ}C$ higher than $T_g$, and no significant SHG decay is observed below $160^{\circ}C$, which is acceptable for nonlinear optical device applications.

The Relaxation of Nonlinear Optical Properties in a Poled Polymer (극화된 고분자에서 비선형 광학특성의 완화)

  • Jung, Chi-Sup
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.491-496
    • /
    • 2010
  • The relaxation behavior of aligned electric dipoles in a mixed polymer of P2ANS with P(VDF-TrFE) is studied with optical second harmonic generation (SHG). In this work, a macroscopic noncentrosymmetry of the spin coated film was achieved by an electrical poling. The relaxation of induced polar order of nonlinear optic(NLO) chromophores after poling leads to an insufficient long-term stability of NLO properties. In this work, we develop a new technique to suppress such kind of dipole relaxation in a poled polymer. We found that the poled dipoles in a NLO polymer were effectively immobilized by the internal electric field created by a thermally annealed ferroelectric polymer. The long-term stability in a mixed system of NLO polymer/ferroelectric polymer was successively accomplished by a series of thermal treatments applied to the mixed polymer system at a temperature of $140^{\circ}C$ for at least 1hour after poling.

A Novel Generalized Nonlinear Dispersion Equation for Five-Layer Waveguides with Kerr-like Nonlinearity

  • Jeong, Jong-Sool;Song, Seok-Ho;Lee, El-Hang
    • ETRI Journal
    • /
    • v.18 no.2
    • /
    • pp.75-86
    • /
    • 1996
  • A new method is proposed for the analysis of optical properties of stationary transverse electirc (TE) nonlinear waves in the five-layer waveguide which consists of a linear guiding layer with two nonlinear bounding layers sandwiched between a semi-infinite clad and a substrate. By using the relation of the interface electric fields, we obtain the generalized form of nonlinear dispersion equations as an analytic and flexible form. In order to verify the dispersion equation, we apply the dispersion equation to the analysis of the symmetric five-layer waveguide. The nonlinear dispersion curves for several thicknesses of the nonlinear thin film is also presented.

  • PDF