• Title/Summary/Keyword: Nonlinear observer design

Search Result 224, Processing Time 0.028 seconds

A VSS observer-based sliding mode control for uncertain systems

  • Watanabe, Keigo;Jin, Sang-Ho;Kimura, Ichiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1300-1305
    • /
    • 1990
  • A VSS observer-based sliding mode control is described for continuous-time systems with uncertain nonlinear elements, in which the Euclidean norm of unknown element is bounded by a known value. For a case of complete state information, we first derive a sliding mode controller consisting of three parts: a linear state feedback control, an equivalent input and a min-niax control. It is then shown that the present attractiveness condition is simpler than that for a case without using the concept of equivalent input. We next design a VSS observer as a completely dual form to the sliding mode controller. Finally, we discuss a cas of incomplete state information by applying the VSS observer.

  • PDF

Design of Optimal Idle Speed Controller by Sliding Mode Observer (슬라이딩 모드 관측기에 의한 최적의 공회전 제어기 설계)

  • Lee, Young-Choon;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.161-167
    • /
    • 2001
  • This paper presents an approach to nonlinear engine idle controller and intake manifold absolute pressure(MAP) observer based on mean torque production model. A stable engine idle speed is important in that the unstable engine Idle mode can make engine to drooping or stall state. A sliding fuzzy controller has been designed to control engine idle speed under load disturbance. A sliding observer is also developed to estimate the intake manifold absolute pressure and compared with the actual MAP sensor value. The sliding mode observer has shown good robustness and good tracking performance. The inputs of sliding fuzzy controller are the errors of rpm and MAP. The output is a duty cycle(DC) for driving a idle speed control valve(ISCV).

  • PDF

Observer Design of SRM for Position-Velocity Estimation (SRM의 위치-속도 추정을 위한 관측자 설계)

  • Lee, Tae-Gyoo;Kim, Jung-Tae;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.219-222
    • /
    • 1994
  • This thesis describes an observer of Switched Reluctance Motor for position. velocity and torque estimation using current sening. Inductance of SRM varies trapezoidally with respect to the rotor position. This means that the inductance of each phase is a periodic function with the same period. Under this condition. the observer with a constant gain can be developed though SRM has nonlinear characteristics. Because SRM has equivalent physical meaning with each period. The stability of error system which is the difference between actual system and observer system. is analyzed using Lyapunov and variable structure theory. The effectiveness of the proposed estimation is shown by various simulation.

  • PDF

Observer based Adaptive Control of Longitudinal Motion of Vehicles (관측자를 이용한 직진 주행 차량의 적응 제어)

  • Kim, Eung-Seok;Kim, Dong-Hun;Lee, Hyoung-Chan;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2608-2610
    • /
    • 2000
  • In this paper, an observer-based adaptive controller is proposed to control the longitudinal motion of vehicles. The standard gradient method will be used to estimate the vehicle parameters, mass, time constant, etc. The nonlinear model between the driving force and the vehicle acceleration will be chosen to design the state observer for the vehicle velocity and acceleration. It will be shown that the proposed observer is exponentially stable, and that the adaptive controller proposed in this paper is stable. It will be proved that the errors of the relative distance, velocity and acceleration converge to zero asymptotically fast, and that the overall system is also asymptotically stable. The simulation results are presented to investigate the effectiveness of the proposed method.

  • PDF

Robust Impedance Control of Kinematically Redundant Manipulator Based on Disturbance Observer (외란 관측기에 의한 기구학적 여유자유도 매니퓰레이터의 강인한 임피던스 제어)

  • 오용환;오상록;정완균
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.963-969
    • /
    • 2002
  • Design method of a robust impedance control is proposed for the kinematically redundant manipulators. To achieve this objective, we first use the momentum feedback disturbance observer(MFDOB) scheme which can handle the nonlinear dynamics of a manipulator in Joint space. An extended task space formulation to describe the behaviors of task and null spaces of redundant manipulator is employed. Using the extended task space formulation and disturbance observer scheme, a robust impedance control method is designed. The performance of the proposed extended impedance controller is verified through experiments with a planar three links direct-drive manipulator.

The Study of Gain Optimization of Sliding Model Controller with Sliding Perturbation Observer by using of Genetic Algorithm

  • K.S. You;Park, M.K.;Lee, M.C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.495-495
    • /
    • 2000
  • The Stewart platform manipulator is a closed-kinematis chain robot manipulator that is capable of providing high st겨ctural rigidity and positional accuracy. However, this is a complex structure, so controllability of the system is not so good. In this paper, it introduces a new robust motion control algorithm using partial state feedback for a class of nonlinear systems in the presence of modelling uncertainties and external disturbances. The major contribution of this work introduces the development and design of robust observer for the slate and the perturbation w.hich is integrated into a variable structure controller(VSC) structure. The combination of controller/observer gives rise to the robust routine called sliding mode control with sliding perturbation observer(SMCSPO). The optimal gains of SMCSPO are easily obtained by genetic algorithm. Simulation and experiment are presented in order to apply to the stewart platform manipulator. There results show highly' accuracy and performance.

  • PDF

Nonlinear model inversion missile control with disturbance accommodating control (외란 적응 제어를 적용한 미사일 비선형 제어)

  • 조현식;김인중;김진호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1500-1503
    • /
    • 1996
  • This paper combines the disturbance accommodating control(DAC) and nonlinear model inversion control for a skid-to-turn(STT) missile. The missile autopilot may be designed to be robust with respect to a variety of uncertainties. We proposes the two step control design method. Nonlinear model inversion control is used as the main design method. Due to the model uncertainties and external disturbances, the exact nonlinear model inversion can not be achieved. DAC is designed to detect, to identify, and to compensate these uncertainties. DAC's disturbance observer is linear. Thus it is easy to implement. It does not cause the convergence problem due to coexistence between the modeling uncertainties and external disturbances. 6 DOF simulation results show that the proposed method may improve the missile tracking performance.

  • PDF

Observer Based Sliding Mode Controller for Nonlinear System using Dynamic Rule Insertion

  • Seo, Ho-Joon;Kim, Dong-Sik;Seo, Sam-Jun;Park, Jang-Hyun;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.67.2-67
    • /
    • 2001
  • In the adaptive fuzzy sliding mode control, from a set of fuzzy IF-THEN rules adaptive fuzzy sliding mode control whose parameters are adjusted on-line according to some adaptation laws is constructed for the purpose of controlling the plant to track a desired trajectory. Most of the research works in nonlinear controller design using fuzzy systems consider the affine system with fixed grid-rule structure based on system state availability. The fixed grid-rule structure makes the order of the controller big unnecessarily, hence the on-line fuzzy rule structure and fuzzy observer based adaptive fuzzy sliding mode controller is proposed to solve system state availability problems. Therefore adaptive laws of fuzzy parameters ...

  • PDF

Design of Disturbance Observer of Nonlinear System Using Neural Network (신경망을 이용한 비선형 시스템의 외란 관측기 설계)

  • Shin, Chang-Seop;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2046-2048
    • /
    • 2003
  • In this paper, a neural disturbance observer(NDO) is developed and its application to the control of a nonlinear system with the internal and/or external disturbances is presented. To construct the NDO, a parameter tuning method is proposed and shown to be useful in adjusting the parameters of the NDO. The tuning method employes the disturbance observation error to guarantee that the NDO monitors unknown disturbances. Each of the nodes of the hidden layer in the NDO network is a radial basis function(RBF). In addition, the relationships between the suggested NDO-based control and the conventional adaptive controls reported in the previous literatures are discussed. And it is shown in a rigorous manner that the disturbance observation error converges to a region of which size can be kept arbitrarily small. Finally, an example and some computer simulation results are presented to illustrate the effectiveness and the applicability of the NDO.

  • PDF

Observer-based Robust Controller Design for HDD Actuator (HDD 액츄에이터를 위한 관측기 기반하의 견실 제어기 설계)

  • Shin, Dong-Kun;Byun, Ji-Young;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.26-28
    • /
    • 2004
  • The sliding mode control law provides a robust solution for general control problems. Most real systems which use a portable hard disk drive have to overcome disturbances and model uncertainties for proper operation. The chattering effect caused from unexpected oscillation can make the system be unstable. Therefore, we propose a robust control algorithm for the nonlinear second order systems with model uncertainties and disturbances. The proposed algorithm is designed following a sliding mode and observer based control. Thus the proposed algorithm has more expanded bounded region of control. Simulation results show the robustness of the proposed controller.

  • PDF