• 제목/요약/키워드: Nonlinear modelling

검색결과 310건 처리시간 0.029초

A Design of the Robust Controller for an Active Noise Control

  • Chung, Tae-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권1E호
    • /
    • pp.3-9
    • /
    • 1998
  • In this paper, a robust active noise controller is designed to reduce noise in al small cavity. Noise characteristics in the small cavity are nonlinear and we could get its model with considerable modelling errors. The objective of this paper is to minimize the effects of these modelling errors and maximize the noise reduction performance. The solution could be obtained by the H∞ robust control theory. The resulting feedback controller minimizes the H∞ norm of the mixed sensitivity function, which means the effects of uncertainties of the model are suppressed in the sense of stability and the performance is enhanced as a given specification. The designed controller is realized with analog devices such as Op. Amps and experimental results show that the controller reduces noise signal sufficiently.

  • PDF

퍼지 동조에 의한 SRM의 속도제어 (Speed Control of SRM Using Fuzzy Tuning)

  • 김상균;신성락;이동희;권영안
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.994-996
    • /
    • 2000
  • Switched reluctance motor generally operates in the magnetically saturated region because the saturation gives several benefits to its performance. This paper investigates the modelling and fuzzy tuning PI control of a nonlinear switched reluctance motor. The modelling is performed through neural network technique. Fuzzy auto-tuning PI control is designed for a robust performance in load and speed variations. Simulation and experimental results indicate better performances compared with simple PI control.

  • PDF

기준 경로의 변형에 의한 로붓 매니플레이터 제어에 관한 연구 (The Study on the Control of Robot Manipulator by Modification of Reference Trajectory)

  • 민경원;이종수;최경삼
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1205-1207
    • /
    • 1996
  • The computed-torque method (CTM) shows good trajectory tracking performance in controlling robot manipulator if there is no disturbance or modelling errors. But with the increase of a payload or the disturbance of a manipulator, the tracking errors become large. So there have been many researchs to reduce the tracking error. In this paper, we propose a new control algorithm based on the CTM that decreases a tracking error by generating new reference trajectory to the controller. In this algorithm we used a fuzzy system based on the rule bases. For the numerical simulation, we used a 2-link robot manipulator. To simulate the disturbance due to a modelling uncertainty, we added errors to each elements of the inertia matrix and the nonlinear terms and assumed a payload to the end-effector. In the simulations of several cases, our method showed better trajectory tracking performance compared with the CTM.

  • PDF

상태궤환 적분제어기법을 이용한 HIV 감염 환자에 대한 약물 치료기법 (Drug Treatment Protocol for HIV Infected Patients Using State Feedback Integral Control Technique)

  • 조남훈
    • 전기학회논문지
    • /
    • 제64권10호
    • /
    • pp.1454-1459
    • /
    • 2015
  • In this paper, a drug treatment protocol is proposed for an HIV infection model that explicitly includes the concentration of healthy T cells, infected T cells, and HIV. Since real parameters of HIV infection model differ from patient to patient, most drug treatment protocols are not able to achieve the treatment goal in the presence of modelling errors. Recently, based on the nonlinear robust control theory, a robust treatment protocol has been proposed that deals with parameter uncertainties. Although the developed scheme is inherently complex, it cannot be applied to the case where all parameters are unknown. In this paper, we propose a new drug treatment protocol that is much simpler than the previous one but can achieve the treatment goal even when all model parameters are unknown. The simulation results verify that the substantial improvement in the performance can be achieved by the proposed scheme.

UTILIZING FIXED POINT METHODS IN MATHEMATICAL MODELLING

  • Dasunaidu Kuna;Kumara Swamy Kalla;Sumati Kumari Panda
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권2호
    • /
    • pp.473-495
    • /
    • 2023
  • The use of mathematical modelling in the study of epidemiological disorders continues to grow substantially. In order to better support global policy initiatives and explain the possible consequence of an outbreak, mathematical models were constructed to forecast how epidemic illnesses spread. In this paper, fractional derivatives and (${\varpi}$ - F𝓒)-contractions are used to explore the existence and uniqueness solutions of the novel coronavirus-19 model.

신경회로망 제어기을 이용한 볼-빔 시스템의 안정화 위치제어 (Stabilization Position Control of a Ball-Beam System Using Neural Networks Controller)

  • 탁한호;추연규
    • 한국항해학회지
    • /
    • 제23권3호
    • /
    • pp.35-44
    • /
    • 1999
  • This research aims to seek active control of ball-beam position stability by resorting to neural networks whose layers are given bias weights. The controller consists of an LQR (linear quadratic regulator) controller and a neural networks controller in parallel. The latter is used to improve the responses of the established LQR control system, especially when controlling the system with nonlinear factors or modelling errors. For the learning of this control system, the feedback-error learning algorithm is utilized here. While the neural networks controller learns repetitive trajectories on line, feedback errors are back-propagated through neural networks. Convergence is made when the neural networks controller reversely learns and controls the plant. The goals of teaming are to expand the working range of the adaptive control system and to bridge errors owing to nonlinearity by adjusting parameters against the external disturbances and change of the nonlinear plant. The motion equation of the ball-beam system is derived from Newton's law. As the system is strongly nonlinear, lots of researchers have depended on classical systems to control it. Its applications of position control are seen in planes, ships, automobiles and so on. However, the research based on artificial control is quite recent. The current paper compares and analyzes simulation results by way of the LQR controller and the neural network controller in order to prove the efficiency of the neural networks control algorithm against any nonlinear system.

  • PDF

Analysis of seismic behavior of composite frame structures

  • Zhao, Huiling
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.719-729
    • /
    • 2016
  • There are great needs of simple but reliable mechanical nonlinear behavior analysis and performance evaluation method for frames constructed by steel and concrete composite beams or columns when the structures subjected extreme loads, such as earthquake loads. This paper describes an approach of simplified macro-modelling for composite frames consisting of steel-concrete composite beams and CFST columns, and presents the performance evaluation procedure based on the pushover nonlinear analysis results. A four-story two-bay composite frame underground is selected as a study case. The establishment of the macro-model of the composite frame is guided by the characterization of nonlinear behaviors of composite structural members. Pushover analysis is conducted to obtain the lateral force versus top displacement curve of the overall structure. The identification method of damage degree of composite frames has been proposed. The damage evolution and development of this composite frame in case study has been analyzed. The failure mode of this composite frame is estimated as that the bottom CFST columns damage substantially resulting in the failure of the bottom story. Finally, the seismic performance of the composite frame with high strength steel is analyzed and compared with the frame with ordinary strength steel, and the result shows that the employment of high strength steel in the steel tube of CFST columns and steel beam of composite beams benefits the lateral resistance and elasticity resuming performance of composite frames.

On the nonlinear structural analysis of wind turbine blades using reduced degree-of-freedom models

  • Holm-Jorgensen, K.;Staerdahl, J.W.;Nielsen, S.R.K.
    • Structural Engineering and Mechanics
    • /
    • 제28권1호
    • /
    • pp.107-127
    • /
    • 2008
  • Wind turbine blades are increasing in magnitude without a proportional increase of stiffness for which reason geometrical and inertial nonlinearities become increasingly important. Often these effects are analysed using a nonlinear truncated expansion in undamped fixed base mode shapes of a blade, modelling geometrical and inertial nonlinear couplings in the fundamental flap and edge direction. The purpose of this article is to examine the applicability of such a reduced-degree-of-freedom model in predicting the nonlinear response and stability of a blade by comparison to a full model based on a nonlinear co-rotating FE formulation. By use of the reduced-degree-of-freedom model it is shown that under strong resonance excitation of the fundamental flap or edge modes, significant energy is transferred to higher modes due to parametric or nonlinear coupling terms, which influence the response and stability conditions. It is demonstrated that the response predicted by such models in some cases becomes instable or chaotic. However, as a consequence of the energy flow the stability is increased and the tendency of chaotic vibrations is reduced as the number of modes are increased. The FE model representing the case of infinitely many included modes, is shown to predict stable and ordered response for all considered parameters. Further, the analysis shows that the reduced-degree-of-freedom model of relatively low order overestimates the response near resonance peaks, which is a consequence of the small number of included modes. The qualitative erratic response and stability prediction of the reduced order models take place at frequencies slightly above normal operation. However, for normal operation of the wind turbine without resonance excitation 4 modes in the reduced-degree-of-freedom model perform acceptable.

보일러 시스템의 견실한 실시간 이상검출법 (Robust On-Line Fault Detection Method for Boiler Systems)

  • Oh-Kyu Kwon;Dae-Woo Kim;You-Soong Kim
    • 제어로봇시스템학회논문지
    • /
    • 제5권1호
    • /
    • pp.16-24
    • /
    • 1999
  • 본 논문은 불확정 시스템의 견실한 이상검출기법의 적용을 위한 실시간 이상검출기법에 대하여 다루며 대상 시스템은 산업용보일러 시스템이다. 본 논문에서 기술된 이상검출기법은 Kwon (1994) 등에 의하여 이미 제시된바 있는 견실한 이상검출기법의 오프라인 배치 처리 알고리즘을 실시간 적용을 위해 확장된 것이며 모델링 오차에 의한 불확실성, 비선형 시스템을 특정 동작점에서 선형화 하는 과정에서 발생하는 선형화 오차, 잡음 등을 고려하였고, 보일러 시스템을 대상으로 한 모의 실험을 통해 본 알고리즘의 우수성을 보였다.

  • PDF

강인성과 응답 성능을 고려한 슬라이딩모드 퍼지 제어기 설계에 관한 연구 (A New Design Method of Sliding Mode Fuzzy Controller with Robust and fast Performance)

  • 박창우;이장욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.425-428
    • /
    • 1998
  • This paper proposes a new fuzzy controller using variable structure control theory. In this paper, after the time-varying fuzzy sliding surface is designed, the fuzzy rules are defined based on the variable structure control theory. This design method makes the fuzzy controller design more structured and can guarantee the stability and robustness of the fuzzy controller and overcome the shortcoming of the variable structure system. Through computer simulation and experiment of nonlinear inverted pendulum system, this thesis demonstrate that system has the robustness against disturbance and modelling error, and the tracking performance of it is improved.

  • PDF