• Title/Summary/Keyword: Nonlinear interaction

Search Result 805, Processing Time 0.027 seconds

2D numerical modelling of soil-nailed structures for seismic improvement

  • Panah, Ali Komak;Majidian, Sina
    • Geomechanics and Engineering
    • /
    • v.5 no.1
    • /
    • pp.37-55
    • /
    • 2013
  • An important issue in the design of soil-nailing systems, as long-term retaining walls, is to assess their stability during seismic events. As such, this study is aimed at simulating the dynamic behavior and failure pattern of nailed structures using two series of numerical analyses, namely dynamic time history and pseudo-static. These numerical simulations are performed using the Finite Difference Method (FDM). In order to consider the actual response of a soil-nailed structure, nonlinear soil behaviour, soil-structure interaction effects, bending resistance of structural elements and construction sequences have been considered in the analyses. The obtained results revealed the efficiency of both analysis methods in simulating the seismic failure mechanism. The predicted failure pattern consists of two sliding blocks enclosed by three slip surfaces, whereby the bottom nails act as anchors and the other nails hold a semi-rigid soil mass. Moreover, it was realized that an increase in the length of the lowest nails is the most effective method to improve seismic stability of soil-nailed structures. Therefore, it is recommended to first estimate the nails pattern for static condition with the minimum required static safety factor. Then, the required seismic stability can be obtained through an increase in the length of the lowest nails. Moreover, placement of additional long nails among lowest nails in existing nailed structures can be considered as a simple retrofitting technique in seismic prone areas.

Evaluation of interfacial shear stress in active steel tube-confined concrete columns

  • Nematzadeh, Mahdi;Ghadami, Jaber
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.469-481
    • /
    • 2017
  • This paper aims to analytically investigate the effect of shear stress at the concrete-steel interface on the mechanical behavior of the circular steel tube-confined concrete (STCC) stub columns with active and passive confinement subjected to axial compression. Nonlinear 3D finite element models divided into the four groups, i.e. circumferential-grooved, talc-coated, lubricated, and normal groups, with active and passive confinement were developed. An innovative method was used to simulate the actively-confined specimens, and then, the results of the finite element models were compared with those of the experiments previously conducted by the authors. It was revealed that both the predicted peak compressive strength and stress-strain curves have good agreement with the corresponding values measured for the confined columns. Then, the mechanical properties of the active and passive specimens such as the concrete-steel interaction, longitudinal and hoop stresses of the steel tube, confining pressure applied to the concrete core, and compressive stress-strain curves were analyzed. Furthermore, a parametric study was performed to explore the effects of the concrete compressive strength, steel tube diameter-to-wall thickness ratio, and prestressing level on the compressive behavior of the STCC columns. The results indicate that reducing or removing the interfacial shear stress in the active and passive specimens leads to an increase in the hoop stress and confining pressure, while the longitudinal stress along the steel tube height experiences a decrease. Moreover, prestressing via the presented method is capable of improving the compressive behavior of STCC columns.

Primary Restorative Transmission Line Selection for Myanmar's Electric Power System

  • Kim, Yong-Hak;Song, In-Jun;Jang, Byung-Tae;An, Yong-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.191-196
    • /
    • 2010
  • Power system restoration following a massive or complete blackout starts with energizing the primary restorative transmission system. During this primary restoration process, unexpected overvoltage may happen due to nonlinear interaction between the unloaded transformer and the transmission system. In the case of the Myanmar electric power system, there are so many wide outage experiences, including complete blackout cases, caused by 230kV line faults and so on. Consequently, Myanmar's system operators have been well trained to deal with wide blackouts. Howver, system blackout restoration has been conducted by relying on the experience of only a few specialists. So, more scientific analysis is required to meet the requirements necessary to ensure fast and reliable system restoration. This paper presents analytical results on the primary restorative transmission system of Myanmar, focusing on the problems during the early restoration process. Methodologies are presented that handle load pick-up, terminal voltage and the reactive capability limitation of black-start generators to compensate the Ferranti effect. Static and dynamic simulation with the PSSolution and EMTDC programs respectively for the six cases are performed in order to select the primary restorative transmission lines.

Comparison of Factors for Controlling Effects in MLP Networks (다층 퍼셉트론에서 구조인자 제어 영향의 비교)

  • 윤여창
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.537-542
    • /
    • 2004
  • Multi-Layer Perceptron network has been mainly applied to many practical problems because of its nonlinear mapping ability. However the generalization ability of MLP networks may be affected by the number of hidden nodes, the initial values of weights and the training errors. These factors, if improperly chosen, may result in poor generalization ability of MLP networks. It is important to identify these factors and their interaction in order to control effectively the generalization ability of MLP networks. In this paper, we have empirically identified the factors that affect the generalization ability of MLP networks, and compared their relative effects on the generalization performance for the conventional and visualized weight selecting methods using the controller box.

Physics of Solar Flares

  • Magara, Tetsuya
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.25.1-25.1
    • /
    • 2010
  • This talk outlines the current understanding of solar flares, mainly focusing on magnetohydrodynamic (MHD) processes. A flare causes plasma heating, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes related to a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), formation of current-concentrated areas (current sheets) in the corona, and magnetic reconnection proceeding in current sheets that causes shock heating, mass ejection, and particle acceleration. A flare starts with the dissipation of electric currents in the corona, followed by various dynamic processes which affect lower atmospheres such as the chromosphere and photosphere. In order to understand the physical mechanism for producing a flare, theoretical modeling has been developed, in which numerical simulation is a strong tool reproducing the time-dependent, nonlinear evolution of plasma before and after the onset of a flare. In this talk we review various models of a flare proposed so far, explaining key features of these models. We show observed properties of flares, and then discuss the processes of energy build-up, release, and transport, all of which are responsible for producing a flare. We come to a concluding view that flares are the manifestation of recovering and ejecting processes of a global magnetic flux tube in the solar atmosphere, which was disrupted via interaction with convective plasma while it was rising through the convection zone.

  • PDF

Equivalent Damping Ratio Based on Earthquake Characteristics of a SDOF Structure with an MR Damper (지진특성에 따른 MR감쇠기가 설치된 단자유도 구조물의 등가감쇠비)

  • Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.87-93
    • /
    • 2008
  • Seismic control performance of MR dampers, which have severe nonlinearity, varies with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally. response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

GLOBAL STABILITY OF HIV INFECTION MODELS WITH INTRACELLULAR DELAYS

  • Elaiw, Ahmed;Hassanien, Ismail;Azoz, Shimaa
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.779-794
    • /
    • 2012
  • In this paper, we study the global stability of two mathematical models for human immunodeficiency virus (HIV) infection with intra-cellular delays. The first model is a 5-dimensional nonlinear delay ODEs that describes the interaction of the HIV with two classes of target cells, $CD4^+$ T cells and macrophages taking into account the saturation infection rate. The second model generalizes the first one by assuming that the infection rate is given by Beddington-DeAngelis functional response. Two time delays are used to describe the time periods between viral entry the two classes of target cells and the production of new virus particles. Lyapunov functionals are constructed and LaSalle-type theorem for delay differential equation is used to establish the global asymptotic stability of the uninfected and infected steady states of the HIV infection models. We have proven that if the basic reproduction number $R_0$ is less than unity, then the uninfected steady state is globally asymptotically stable, and if the infected steady state exists, then it is globally asymptotically stable for all time delays.

A comprehensive FE model for slender HSC columns under biaxial eccentric loads

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.;Sun, Wei
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • A finite element (FE) model for analyzing slender reinforced high-strength concrete (HSC) columns under biaxial eccentric loading is formulated in terms of the Euler-Bernoulli theory. The cross section of columns is divided into discrete concrete and reinforcing steel fibers so as to account for varied material properties over the section. The interaction between axial and bending fields is introduced in the FE formulation so as to take the large-displacement or P-delta effects into consideration. The proposed model aims to be simple, user-friendly, and capable of simulating the full-range inelastic behavior of reinforced HSC slender columns. The nonlinear model is calibrated against the experimental data for slender column specimens available in the technical literature. By using the proposed model, a numerical study is carried out on pin-ended slender HSC square columns under axial compression and biaxial bending, with investigation variables including the load eccentricity and eccentricity angle. The calibrated model is expected to provide a valuable tool for more efficiently designing HSC columns.

Flexural ductility of reinforced and prestressed concrete sections with corrugated steel webs

  • Chen, X.C.;Au, F.T.K.;Bai, Z.Z.;Li, Z.H.;Jiang, R.J.
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.625-642
    • /
    • 2015
  • Prestressed concrete bridges with corrugated steel webs have emerged as one of the promising bridge forms. This structural form provides excellent structural efficiency with the concrete flanges primarily taking bending and the corrugated steel webs primarily taking shear. In the design of this type of bridges, the flexural ductility and deformability as well as strength need to be carefully examined. Evaluation of these safety-related attributes requires the estimation of full-range behaviour. In this study, the full-range behaviour of beam sections with corrugated steel webs is evaluated by means of a nonlinear analytical method which uses the actual stress-strain curves of the materials and considers the path-dependence of materials. In view of the different behaviour of components and the large shear deformation of corrugated steel webs with negligible longitudinal stiffness, the assumption that plane sections remain plane may no longer be valid. The interaction between shear deformation and local bending of flanges may cause additional stress in flanges, which is considered in this study. The numerical results obtained are compared with experimental results for verification. A parametric study is undertaken to clarify the effects of various parameters on ductility, deformability and strength.

Non-linear dynamics of wetland vegetation induced by groundwater table (지하수위와 연계된 습지 식생의 비선형 동역학)

  • Lee, Okjeong;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.132-139
    • /
    • 2019
  • Bi-directional interaction between vegetation and groundwater table has a great influence on the dynamics of wetland vegetation. In this study, nonlinear dynamics of wetland vegetation affected by groundwater are analyzed. The effect on groundwater is described as a loss term in the governing equation of wetland vegetation and it is explored how the wetland vegetation is likely to converge into two attractors by groundwater table change. From this conceptual approach, the vulnerability to catastrophic shifts in stable state where the current vegetation species are extinct and stabilized by other vegetation species is analyzed in response to groundwater table.