Browse > Article
http://dx.doi.org/10.17663/JWR.2019.21.2.132

Non-linear dynamics of wetland vegetation induced by groundwater table  

Lee, Okjeong (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University)
Kim, Sangdan (Department of Environmental Engineering, 45, Pukyong National University)
Publication Information
Journal of Wetlands Research / v.21, no.2, 2019 , pp. 132-139 More about this Journal
Abstract
Bi-directional interaction between vegetation and groundwater table has a great influence on the dynamics of wetland vegetation. In this study, nonlinear dynamics of wetland vegetation affected by groundwater are analyzed. The effect on groundwater is described as a loss term in the governing equation of wetland vegetation and it is explored how the wetland vegetation is likely to converge into two attractors by groundwater table change. From this conceptual approach, the vulnerability to catastrophic shifts in stable state where the current vegetation species are extinct and stabilized by other vegetation species is analyzed in response to groundwater table.
Keywords
groundwater table; non-linear dynamics; wetland vegetation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tsoularis, A., and J. Wallance (2002), Analysis of logistic growth models, Math. Biosci., 179, 21-55. doi:10.1016/S0025-5564(02)00096-2   DOI
2 Stogatz, S. H. (1994), Nonlinear dynamics and chaos, Addison-Wesley Publishing Company, 498p.
3 Vesipa, R., Camporeale, C., & Ridolfi, L. (2017). Effect of river flow fluctuations on riparian vegetation dynamics: Processes and models. Advances in Water Resources, 110, 29-50. doi:10.1016/j.advwatres.2017.09.028   DOI
4 You X, Liu J. Modeling the spatial and temporal dynamics of riparian vegetation induced by river flow fluctuation. Ecol Evol. 2018;8:3648-3659. doi:10.1002/ece3.3886   DOI
5 Cooper, D. J., Damico, D. R., and Scott, M. L. (2003). Physiological and morphological response patterns of Populus deltoides to alluvial groundwater pumping. Environmental Management, 31, 0215-0226. doi:10.1007/s00267-002-2808-2   DOI
6 Friedman, J. M., and Auble, G. T. (1999). Mortality of riparian box elder from sediment mobilization and extended inundation. Regulated Rivers: Research & Management, 15, 463-476. doi:10.1002/(SICI)1099-1646(199909/10)15:5<463::AID-RRR559>3.0.CO;2-Z   DOI
7 Gurnell, A. M., Bertoldi, W., and Corenblit, D. (2012). Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth-Science Reviews, 111, 129-141. doi:10.1016/j.earscirev.2011.11.005   DOI
8 Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology, Evolution, and Systematics, 4, 1-23. doi:10.1146/annurev.es.04.110173.000245   DOI
9 Lite, S. J., Bagstad, K. J., and Stromberg, J. C. (2005). Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, san Pedro river, Arizona, USA. Journal of Arid Environments, 63, 785-813. doi:10.1016/j.jaridenv.2005.03.026   DOI
10 Loheide, S. P., and Booth, E. G. (2011). Effects of changing channel morphology on vegetation, groundwater, and soil moisture regimes in groundwater-dependent ecosystems. Geomorphology, 126, 364-376. doi:10.1016/j.geomorph.2010.04.016   DOI
11 Meek, C. S., Richardson, D. M., and Mucina, L. (2010). A river runs through it: Land-use and the composition of vegetation along a riparian corridor in the Cape Floristic Region, South Africa. Biological Conservation, 143, 156-164. doi:10.1016/j.biocon.2009.09.021   DOI
12 Camporeale, C., and Ridolfi, L. (2006). Riparian vegetation distribution induced by river flow variability: A stochastic approach. Water Resources Research, 42, W10415. doi:0043-1397/06/2006WR004933   DOI
13 Peck, A. J., and Williamson, D. R. (1987). Effects of forest clearings on groundwater, Journal of Hydrology, 94, 47-65. doi:10.1016/0022-1694(87)90032-1   DOI
14 Ridolfi, L., D'Odorico, P. and F. Laio (2006). Effect of vegetation-water table feedbacks on the stability and resilience of plant ecosystems, Water Resources Research, 42, W01201. doi:10.1029/2005WR004444   DOI
15 Roy, V., Ruel, J.-C. and Plamondon, A. P. (2000). Establishment, growth and survival of natural regeneration after clearcutting and drainage on forested wetlands, For. Ecol. Manage., 129, 253-267. doi:10.1016/S0378-1127(99)00170-X   DOI
16 Schroder, A., L. Persson, and M. D. De Roos (2005), Direct experimental evidence for alternative stable states: A review, Oikos, 110, 3-19. doi:10.1111/j.0030-1299.2005.13962.x   DOI
17 Bogino, S. M., and Jobbagy, E. G. (2011). Climate and groundwater effects on the establishment, growth and death of Prosopis caldenia trees in the pampas (Argentina). Forest Ecology and Management, 262, 1766-1774. doi:10.1016/j.foreco.2011.07.032   DOI