• Title/Summary/Keyword: Nonlinear integral operators

Search Result 16, Processing Time 0.03 seconds

A GENERIC RESEARCH ON NONLINEAR NON-CONVOLUTION TYPE SINGULAR INTEGRAL OPERATORS

  • Uysal, Gumrah;Mishra, Vishnu Narayan;Guller, Ozge Ozalp;Ibikli, Ertan
    • Korean Journal of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.545-565
    • /
    • 2016
  • In this paper, we present some general results on the pointwise convergence of the non-convolution type nonlinear singular integral operators in the following form: $$T_{\lambda}(f;x)={\large\int_{\Omega}}K_{\lambda}(t,x,f(t))dt,\;x{\in}{\Psi},\;{\lambda}{\in}{\Lambda}$$, where ${\Psi}$ = and ${\Omega}$ = stand for arbitrary closed, semi-closed or open bounded intervals in ${\mathbb{R}}$ or these set notations denote $\mathbb{R}$, and ${\Lambda}$ is a set of non-negative numbers, to the function $f{\in}L_{p,{\omega}}({\Omega})$, where $L_{p,{\omega}}({\Omega})$ denotes the space of all measurable functions f for which $\|{\frac{f}{\omega}}\|^p$ (1 ${\leq}$ p < ${\infty}$) is integrable on ${\Omega}$, and ${\omega}:{\mathbb{R}}{\rightarrow}\mathbb{R}^+$ is a weight function satisfying some conditions.

A NOTE ON SCATTERING OPERATOR SYMBOLS FOR ELLIPTIC WAVE PROPAGATION

  • Kim, Jeong-Hoon
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.349-361
    • /
    • 2002
  • The ill-posed elliptic wave propagation problems can be transformed into well-posed initial value problems of the reflection and transmission operators characterizing the material structure of the given model by the combination of wave field splitting and invariant imbedding methods. In general, the derived scattering operator equations are of first-order in range, nonlinear, nonlocal, and stiff and oscillatory with a subtle fixed and movable singularity structure. The phase space and path integral analysis reveals that construction and reconstruction algorithms depend crucially on a detailed symbol analysis of the scattering operators. Some information about the singularity structure of the scattering operator symbols is presented and analyzed in the transversely homogeneous limit.

A Coupled Fixed Point Theorem for Mixed Monotone Mappings on Partial Ordered G-Metric Spaces

  • Lee, Hosoo
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.3
    • /
    • pp.485-500
    • /
    • 2014
  • In this paper, we establish coupled fixed point theorems for mixed monotone mappings satisfying nonlinear contraction involving a pair of altering distance functions in ordered G-metric spaces. Via presented theorems we extend and generalize the results of Harjani et al. [J. Harjani, B. L$\acute{o}$pez and K. Sadarangani, Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal. 74 (2011) 1749-1760] and Choudhury and Maity [B.S. Choudhury and P. Maity, Coupled fixed point results in generalized metric spaces. Math. Comput. Model. 54 (2011), 73-79].

ANALYTICAL AND APPROXIMATE SOLUTIONS FOR GENERALIZED FRACTIONAL QUADRATIC INTEGRAL EQUATION

  • Abood, Basim N.;Redhwan, Saleh S.;Abdo, Mohammed S.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.497-512
    • /
    • 2021
  • In this paper, we study the analytical and approximate solutions for a fractional quadratic integral equation involving Katugampola fractional integral operator. The existence and uniqueness results obtained in the given arrangement are not only new but also yield some new particular results corresponding to special values of the parameters 𝜌 and ϑ. The main results are obtained by using Banach fixed point theorem, Picard Method, and Adomian decomposition method. An illustrative example is given to justify the main results.

GENERALIZED CONDITIONS FOR THE CONVERGENCE OF INEXACT NEWTON-LIKE METHODS ON BANACH SPACES WITH A CONVERGENCE STRUCTURE AND APPLICATIONS

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.433-448
    • /
    • 1998
  • In this study we use inexact Newton-like methods to find solutions of nonlinear operator equations on Banach spaces with a convergence structure. Our technique involves the introduction of a generalized norm as an operator from a linear space into a par-tially ordered Banach space. In this way the metric properties of the examined problem can be analyzed more precisely. Moreover this approach allows us to derive from the same theorem on the one hand semi-local results of kantorovich-type and on the other hand 2global results based on monotonicity considerations. By imposing very general Lipschitz-like conditions on the operators involved on the other hand by choosing our operators appropriately we can find sharper error bounds on the distances involved than before. Furthermore we show that special cases of our results reduce to the corresponding ones already in the literature. Finally our results are used to solve integral equations that cannot be solved with existing methods.

Comparative Analysis of Integer-order and Fractional-order Proportional Integral Speed Controllers for Induction Motor Drive Systems

  • Khurram, Adil;Rehman, Habibur;Mukhopadhyay, Shayok;Ali, Daniyal
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.723-735
    • /
    • 2018
  • Linear proportional-integral (PI) controllers are an attractive choice for controlling the speed of induction machines because of their simplicity and ease of implementation. Fractional-order PI (FO-PI) controllers, however, perform better than PI controllers because of their nonlinear nature and the underlying iso-damping property of fractional-order operators. In this work, an FO-PI controller based on the proposed first-order plus dead-time induction motor model and integer-order (IO) controllers, such as Ziegler-Nichols PI, Cohen-Coon PI, and a PI controller tuned via trial-and-error method, is designed. Simulation and experimental investigation on an indirect field-oriented induction motor drive system proves that the proposed FO-PI controller has better speed tracking, lesser settling time, better disturbance rejection, and lower speed tracking error compared with linear IO-PI controllers. Our experimental study also validates that the FO-PI controller maximizes the torque per ampere output of the induction machine and can effectively control the motor at low speed, in field-weakening regions, and under detuned conditions.