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ABSTRACT. In this paper, we establish coupled fixed point theorems for mixed monotone
mappings satisfying nonlinear contraction involving a pair of altering distance functions in
ordered G-metric spaces. Via presented theorems we extend and generalize the results of
Harjani et al. [J. Harjani, B. Lépez and K. Sadarangani, Fixed point theorems for mixed
monotone operators and applications to integral equations, Nonlinear Anal. 74 (2011)
1749-1760] and Choudhury and Maity [B.S. Choudhury and P. Maity, Coupled fixed point
results in generalized metric spaces. Math. Comput. Model. 54 (2011), 73-79].

1. Introduction and Preliminaries

Mustafa and Sims [21] introduced the notion of G-metric spaces. The struc-
ture of G-metric spaces is a generalization of metric spaces. Mustafa and Sims [21]
initiated the theory of fixed points in G-metric spaces and established the Banach
contraction principle in this generalized structure. Afterwards, different authors
proved several fixed point results in this space (see, e.g., [2, 3, 6, 7, 10, 11, 18, 19,
20, 22, 27, 28]).

Definition 1.1.([21]) Let X be a nonempty set. Suppose that a mapping G :
XXX xX — R, =[0,00) satisfies:

(G1) G(z,y,2) =0ifx =y = 2

(G2) G(z,x,y) > 0 for all z,y € X with © # y;

(G3) G(z,z,y) < G(x,y,2) for all z,y,z € X with z # y;
(G4) (symmetry in all three variables)

G(xvyv ) - G(Z‘,Z,y) - G(y,z,x) = .3
(G5) (rectangle inequality)
G(z,y,2) < G(z,a,a) + G(a,y, z) for all z,y,z,a € X.
Then G is called a G-metric on X and (X, G) is called a G-metric space or a
generalized metric space by G.
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The following are examples of G-metric spaces.

Example 1.2. Let (R, d) be the usual metric space. Define G; and G2 by

Gl(x?yv Z) = d(.??, y) + d(y’ Z) + d(.l?, 2)7
GQ([E’ Y, Z) = max{d(m,y),d(y, Z)v d([E, Z)}

for all z,y, 2z € R. Then it is clear that (R,G1) and (R, G2) are G-metric spaces.
Example 1.3. Let X = {a,b} and G : X x X x X — [0,00) be defined by

G(a7 a’ a) = G(b’ b7 b) = 07
G(a,a,b) = G(a,b,a) = G(b,a,a) =1,
G(a,b,b) = G(b,a,b) = G(b,b,a) = 2.

It is easy to show that the function G satisfies all properties of Definition .

Definition 1.4.([21]) Let X be a G-metric space and let {z,} be a sequence
of points of X. A point z € X is said to be the limit of a sequence {x,} if
limy, 1 —oco G(%, Ty, ) = 0 and we say in this case that the sequence {z,} is said
to be G-convergent to x.

Thus, z, — z in a G-metric space X if for any € > 0, there exists a positive
integer N such that G(z,zy,zn) < €, for all n,m > N. It has been shown in [21]
that the G-metric induces a Hausdorff topology and the convergence described in
the above definition is relative to this topology.

Lemma 1.5.([21]) If X is a G-metric space, then the following are equivalent:
(i) {xn} is G-convergent to x,
(ii) G(zp, Tn,z) — 0 as n — 0o,
(iii) G(zpn,x,x) — 0 as n — oo.

Definition 1.6.([21]) Let X be a G-metric space, a sequence {z,} is called G-
Cauchy if for every ¢ > 0 there is a positive integer N such that G(z,,, Tm, ;) < €
for all n,m,l > N, that is, if G(z, xm, ;) — 0, as n,m,l — oc.

Lemma 1.7.[[21]] If X is a G-metric space, then the following are equivalent:
(i) The sequence {z,} is G-Cauchy.
(ii) For every € > 0, there exists a positive integer N such that
G(xp, Tm, Tm) < € for all n,m > N.

Definition 1.8.([21]) A G-metric space X is said to be G-complete (or a complete
G-metric space) if every G-Cauchy sequence is G-convergent in (X, G).

Definition 1.9.([21]) Let (X,G) and (X', G’) be two generalized metric spaces.
A mapping f : X — X' is G-continuous at a point x € X if and only if it is G
sequentially continuous at z, that is, whenever {z,} is G-convergent to z, {f(x,)}
is G'-convergent to f(x).
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Definition 1.10.([21]) Let X be a G-metric space. A mapping F: X x X — X
is said to be continuous if for any two G-convergent sequences {z,} and {y,} con-
verging to x and y, respectively, {F(x,,yn)} is G-convergent to F(z,y).

In recent years, there has been a lot of interest in establishing fixed point
theorems on ordered metric spaces with a contractive condition which holds for
all points that are related by partial ordering. This trend was initiated by Ran
and Reurings in [26] where they extended the Banach contraction principle in par-
tially ordered sets with some applications to matrix equations. Subsequently, Nieto
and Rodriguez-Lépez [24] extended the results in [26] for non-decreasing mappings
and applied them to obtain a unique solution for a first-order ordinary differen-
tial equation with periodic boundary conditions. Recently, many researchers have
obtained common fixed point results on partially ordered metric spaces (see, e.g.,
[4,5,8,9, 14, 23, 24, 25]).

Bhaskar and Lakshmikantham [12] introduced the notions of a mixed monotone
mapping and a coupled fixed point, and proved some coupled fixed point theorems
for mixed mappings in ordered metric spaces. Afterwards, Lakshmikantham and
Ciri¢ [16] have established coupled coincidence and coupled fixed point theorems for
two mappings F' and g, where F' has the mixed g-monotone property. Many other
results on coupled fixed point theory exist in the literatures [1, 13, 16, 17, 29, 30].

Definition 1.11.([12]) Let (X, <) be a partial ordered set. A mapping F': X x X —
X is said to have the a mized monotone property if F' is monotone nondecreasing
in its first argument and is monotone nonincreasing in its second argument, that is,
for any z,y € X

(1.1) r1,22 € X, ®1 <xp = F(x1,y) < F(22,v)
and
(1.2) yi,y2 € X, 11 <y2 = F(z,y1) > F(x,y2).

Definition 1.12.([12]) An element (z,y) € X x X is called a coupled fized point of
mapping F : X x X — X if

v =F(z,y) and y=F(y,z).

An altering distance function was introduced by Khan et al. in [15] where they
present some fixed point theorems.

Definition 1.13. An altering distance function is a map ¥ : [0,00) — [0,00)
satisfying:

(i) ¥ is continuous and nondecreasing;

(ii) ¥(¢) = 0 if and only if ¢t = 0.
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Let (X, <) be a partially ordered set and suppose that there exists a metric d
on X such that (X,d) is a complete metric space. Harjani, Lépez and Sadarangani
[13] established some coupled fixed point theorems for the mixed monotone mapping
F: X x X — X involving a pair of altering distance functions under a contractive
condition of the form

¢(d(F($, y)> F(uv U))) < qS(max{d(x, u)? d(yv U)}) - ¢(max{d(x7 u)v d(y7 U)})

for z,y,u,v € X with z > w and y < v, where ¢ and v are altering distance
functions. The purpose of this work is to extend this theorem to the set of G-metric
spaces.

2. Coupled Fixed Point in G-Metric Spaces

Theorem 2.1. Let (X, <) be a partially ordered set such that there exists a complete
G-metric on X and F : X x X — X be a continuous mapping having the mized
monotone property. Suppose that there exist altering distance functions ¢ and
such that

(2.1) o(G(F(z,y), F(u,v), F(w, z)))
’ < p(max{G(z,u, w), G(y,v,2)}) — Y(max{G(z,u,w), G(y,v,2)})

for all x,y, z,u,v,w € X for which x > u > w and y < v < z where either x # u
ory #v. If there exist xg,yo € X such that

o < F(xo,90) and  yo > F(yo,xo),

then F has a coupled fized point.

Proof. We construct sequences (x,,) and (y,) putting
Tyt = F(2n,yn) and yny1 = F(yn,v,) for n>0.

In order that the proof is more comprehensive, we will divide it in several steps.

Step 1. z, < 41 and Y, > Yp41, for n > 0.

In fact, we use mathematical induction.
As 2o < F(xo,y0) = 1 and yo > F(yo, zo) = y1 our claim is satisfied for n = 0.
Again by the induction hypothesis and the mixed monotone property of F', we have

T+l = F(xnayn) > F(xn—17yn—1) = Tn
and
Yn+1 = F (ynyxn) < F(ynflamnfl) =Yn-

This proves our claim.

Step 2. lim, 0o G (mna Tn+1, xn—i—l) =lim, 00 G (yna Yn+1, yn-l—l) =0.
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From the contractive condition (2.1) and Step 1, we obtain

0 (G (Tn, Tny1, Tny1))
=0 (G (F (Tn-1,Yn-1) s F (Tn,Yn) , F (Tnsyn)))
(2.2) < o (max{G(Tn-1,%n, Tn), G(Yn—1,YnYn)})
—1/1 (maX{G(xnfla L, xn)v G(ynfl, Yn, yn)})
< (maX{G(xnfla LTy xn)a G(ynflv Yn, yn)}) .

Using the fact that ¢ is nondecreasing, we have

G (xna Tn+1, Q3n—|—1) < maX{G(xn—la Ty xn)a G(yn—la Yn, yn)}

Similarly, we get

G (Yn» Yn+1,Ynt1) < max{G(Tn_1,%n, Tn), G(Yn—1,Yn,Yn) }-

Hence, the sequence {max{G (zpn, Tn+1,Tnt1), G (UnsYn+1, Yn+1)}}rep IS DONNEGA-
tive and decreasing. This implies that there exists a > 0 such that

lim maX{G (.Tn, LTn+1, l‘n+1) ) G (yTH Yn+1, yn+1)} = Q.

n—oo

It is easily seen that if ¢ : [0,00) — [0,00) is nondecreasing, ¢(max{ai,az}) =
max{(a1), p(az)} for ar,as € [0,00). Taking into account this and (2.2) we get

¥ (maX{G (J?n, Tn+1, xn-&-l) ) G (y'r‘m Yn+1, y7z+1)})
= max{<p (G (Inv Ln+1, :L’n+1)) » P (G (yn7 Yn+1, yn—i-l))}
< (maX{G(xnfla Tn, xn)v G(ynfl» Yn, yn)})
—1/1 (maX{G(xnflyxnaxn)aG(ynfhynayn)})
S "2 (maX{G(-’I;nfly Ty xn)v G(ynflv Yn, yn)}) .

Since ¢ is a continuous function, letting n — oo in the above inequalities yields

p(a) <p(a) =) <p(a).

and this implies ¥(a) = 0. Since v is an altering distance function, o = 0 and

lim maX{G (xnv Tn+1, xn+1) >G (yna Yn+1, yn+1)} = 07

n—oo
and this proves our claim.

Step 3. {z,} and {y,} are G-Cauchy sequences.
Assume that at least one of the sequences {z,} and {y,} is not a G-Cauchy se-
quence. By Lemma , this implies that

lim G (xn,Tm,Tm) #0  or lim G (Yn, Ym, Ym) £ 0

n,m— 00 n,m— o0

and, consequently,

lim max{G(zn, ZTm,ZTm), GUn, Ym,Ym)} # 0.

n,m— 00
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This means that there exists an € > 0 for which we can find two subsequences
{Zm)} and {2, )} of {xx} such that n(k) is the smallest index for which

(23) max {G (xn(k), Tm(k)s xm(k)) ’ G (yn(k)> Ym (k) ym(k)) } >e
for n(k) > m(k) > k.

This means that

(2.4) max {G (Tn(k)—1, Tom(k)> Trm(k)) » G (Yn(e)=1> Ym(k)s Ym(k)) } < €

The rectangle inequality and (2.4) give us, for each k,

G (Tn(k) Tm(k)> Tm(k))
(25) <G (mn(k)v Tn(k)—1, xn(k)—l) +G (xn(k)—h T (k) xm(k))
< G (Tnk), Tn(k)—1> Tnk)-1) T €

and

G (Yn(k)> Ym(k)s Ym(k))
(2.6) < G (Yn)s Yn(k) =15 Yn(k)—1) + G (Yn (k)1 Ym(k)> Ym (k) )
< G (Yn(k) Yn(k)—1> Yn(k)—1) + €

Using (2.3), (2.5) and (2.6), we get

e < max EG Exn(m Trn(k)s Trm(k)) > G (Yn(k)s Ym(k)s Ym()) }
< max {G (Tnk): Tn(k)—15 Tn(k)=1) + G (Un(k)> Yn(k)=1> Un(k)—1) } + €.

Letting & — oo in the last inequality and using Step 2, we obtain that

(2.7) lim max {G (Zn(k), Trm(k), Tm(k)) » G (Yn(k): Ym(k) Ym@)) } = €-

k—o0

Again, the rectangle inequality and (2.4) give us, for each k,

G (T (k) =15 Trm(k)—1> Trm(k)—1)
(2.8) <G (T —1> Tm(k)> Tm(k)) + G (Tm(k)s Tm(k)—1> Tm(k)—1)
< e+ G (Tmk)s Tm(k)—1> Tm(k)—1

and

G (Yn(k)=1> Ym(k) =1 Ym(k)—1)
(2.9) < G (Yn(k)—15 Ym(k)s Ym()) + G Um(kys Ym (k) =1 Ym(k)—1)
<&+ G (Ym(k)s Ym(k) =1 Ym(k)—1) -

By (2.8) and (2.9) we get
(2.10)

max {G (Zn(k) -1, Tr(k)—15 Tm(k)—1) s G Un(k)—15 Ym(k)—15 Ym(k)—1) }
< max {G (Tmk), Tm) -1 Tmk)—1) » G (Ymk)s Ym(k)—15 Ym(k)—1) } + €.
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Using the rectangle inequality we have

G (Tn(k) T (k)> T (k) )
< G (Tn)s Tnk)—15 Tnk)—1) + G (Tnk)—1, Tm(k)—1> Tm(k)—1)
+ G (T (k) =15 Tm(k)> T (k)

and
G (Yn(k) Ym(k)s Ym(k))
< G Unk) Ynk) =15 Un(k)=1) + G (Yn(k)=15 Ym(k)—1> Ym(k)—1)
+ G (Ym(k)—1> Ym(k)> Ym(k)) -

By the two last inequalities and (2.3) we get
(2.11)
¢ < max {G (xn(k)a Tm(k)> xm(k)) ’ G (yn(k)a Ym(k)> ym(k)) }
< max {G (Tnk) Tnk)—1> Tn(k)=1) » G (Yn(k)» Yn(k) =15 Yn(k)—1) }
max { G (Tn ()= 15 Tm(k) - 1> Tmk)—1) » G (Ynk) = 1> Ym(k) =1, Ym(k)—1) }
Fmax { G (Tm) 1, Tm(k) Tm(k)) » G (Ym(k) =1 Ym(k)> Ym(k)
)

By (2.10) and (2.11) we have
e 4+ max {G (Tmm), Tmk) -1 Tm(k)=1) + G Ym(k)s Ym (k) =1 Ymk)—1) }
> max {G (Tp(k)—15 Tmk)—1> Tmk)—1) » G (Ynk)—1> Ym(k)—1> Ym(k)—1) }

>e — max {G (Tnk), Tnk)—15 Tnk)—1) » G (Un(k)> Yn(k)—1> Yn(k)—1) }
—max {G (Zp(k)—1, Tmk)> Tm(k)) » G (Ym(k)—1> Ym(k)s Ym(k)) } -

Letting k — oo in the last inequality, and by Step 2, we obtain that

(212)  max {G (Tok)—1, Tm(k)—15 Tmk)-1) s G (Un(k)—15 Ym(k)—15 Ym(k)—1) } = E-

Since n(k) > m(k) > k, by Step 1

Tnk)—1 < Ty ad Ynk)—1 = Yn(k)

and using the contractive condition we can obtain

¢ (G (Tnk), Tm(k) Tmk)) )
= ¢ (G (F (#n)=1>Un(t)=1) s F (@m) =15 YUmk)=1) » F (T =1 Ym)-1)))
< @ (max \G (Tnk)—15 Tm(k)—1) Tm(k)—1 7Géyn(k)fhym(k)flaym(k)fl

— ¥ (max {G (Tnk)—1, Tmk) =15 Tmk)=1) » G (Un(k) =15 Ym(k) =15 Ym(k)—1

and

@ (G (Un(k)> Ym(k)» Ym(k)))

=0 (G (F Wnt)-1:Tn)=1) + F Um)—1Tm)—=1) s F Umr)—1> Tm@)—1)))

< ¢ (max {G (Tn) -1, Tmk)—1 Tmk)=1) + G (Un(k)—1> Ym(k)— 15 Ym(k)—1) })
— ¢ (max {G (Tn)—1 Tmk)—15 Tmk)=1) » G (Yn(k) =15 Ym(k)—15 Ym(k)—1
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Thus,
(2.13)
¢ (max {G (Tnk), Tm(k)s Tm(k)) » G (Yn(k)> Ym(k) Ym(e)) })
< ¢ (max {G (Tnk)—1> Tm(k)—1 Tm)-1) » G (yn(k)uym(k)l,ym(k)ﬂ%
— ¢ (max {G (Tn(k)—1, Tmk) =1 Tm(k)—1) + G (Yn(k)—1> Ym(k)—1> Ym(k)=1) }) -

Finally, letting ¥ — oo in (2.13) and using (2.7), (2.12), and the continuity of
@ and ¥, we get
o(e) < p(e) —1(e)

and, consequently, ¥ (¢) = 0. Since v is an altering distance function, ¢ = 0, and
this is a contradiction. This proves our claim.

Since (X, G) is a complete G-metric space there exist z,y € X such that the
sequences {z} and {y} are G-convergent to z and y, respectively.

In fact, using the continuity of F' we have

x = klim Thi1 = klim F (zg,yx) = F (klim xk,klim yk) = F(x,y)
y = klim Ykt1 = klim F (yx,z) = F <klim yk,klim xk> =F(y,x).
This proves that (z,y) is a coupled fixed point F. O

In the following result, the continuity of F' is not required.

Theorem 2.2. Let (X, <) be a partially ordered set such that there exists a complete
G-metric on X and F : X x X — X be a mapping having the mized monotone
property. Suppose that there exist altering distance functions ¢ and 1 such that

G(F(x,y), F(u,v), F(w, 2))

G < o(max{Gla.uw), Gly,v.2)}) — Y(max{Gle.uw). Gly.v.2)))

for all x,y, z,u,v,w € X for which z > u > w and y < v < z where either x # u
ory # v. If there exists xg,yo € X such that

o < F(zo,90) and  yo > F(yo, o)

and X has the following property:

(i) if a nondecreasing sequence {x,} is G-convergent to x, then x,, < x for all
néeN,

(ii) if a nonincreasing sequence {y,} is G-convergent to y, then y, >y for all
néeN,
then F has a coupled fixed point.

Proof. Following the proof of Theorem we only have to check that (x,y) is a coupled
fixed point of F.
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In fact, since {x,} is nondecreasing and z,, — z, and {y, } is nonincreasing and
Yn — Y, by our assumption, x,, < z and y,, > y for every n € N.

Applying the contractive condition of altering distance functions ¢ and v we
have

@(G(F(Z‘,Z/)7F($n,yn)7F($n,yn)))
< pmax{G (z,2n,2n) G (Y, Yn, yn)}) — ¢ (max{G (z,2n, 2n) G (¥, Yn, yn)})
< @ max{G (2, 2n, ¥n) G (Y, Yns Yn)}) -

and, since ¢ is nondecreasing, we obtain

(215)  G(F(z,9), F (@n,yn), F (2, yn)) < max {G (2,2, Tn) G (Y Yn: Yn)} -

On the other hand, by the rectangle inequality and (2.15) we get

G(z, F(2,y), F(z,9))
G( (Tnt1, F (2,9) , F (2, y))

= G (2, Tny1,Tnp1 (F' (Tnyyn)  F (2, y), F (7,9))
G (2, Tpt1,Tnt1) + max {G (v, 2,2) , G (Yn, ¥, Y) } -

+G
+G

IN

(
X, Tptl, Tntl)
)
)

Taking n — oo in the last inequality, Lemma 1.3 yields
Gz, F(z,y), F(z,y) =0

and hence, z = F (x,y).
Using a similar argument it can be proved that y = F(y,z) and this finished
the proof. O

Now, we will show that many results can be deduced from our previously ob-
tained results.

Corollary 2.3. If in Theorem 2.1 (resp. Theorem 2.3) we replace the contractive
condition by

there exists a € [0,1) such that
G(F(z,y), F(u,v), F(w,2)) < a -max{G(z,u,w), G(y,v, 2)}

for all x > u > wand y < v < z where either = # u or y # v,

then F' has a coupled fixed point of F'.
Proof. Taking as ¢ = identity and ¥ = (1 — )¢, we obtain the corollary. O

Corollary 2.4. If in Theorem 2.1 (resp. Theorem 2.2) we replace the contractive
condition by
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there exist d1,d2 € [0,1) and &; + d2 < 1 such that
G(F(az,y),F(u, U),F(’LU,Z)) < 61 G(x,u,w) + 62 G(y,’U,Z)

for all x > u > wand y < v < z where either z # u or y # v,

then F' has a coupled fixed point of F'.
Proof. We have

G(F(z,y), F(u,v), F(w, 2)) 0 Gz, u,w) + d3 G(y,v,2)

<
< (01 + 92) max{G(z,u,w),G(y,v,2)}.

Therefore, applying Corollary 2.3 we obtain the desired result. O

Remark 2.5. Taking §; = 02 = g in Corollary 2.4, we can obtain Theorem 3.2 of
Choudhury and Maity [10].

3. Uniqueness of Coupled Fixed Point in G-Metric Spaces

In this section, we consider some additional conditions to ensure the uniqueness
of a coupled fixed point in the setting of partially ordered G-metric spaces. Fur-
thermore, we study appropriate conditions to ensure that for a coupled fixed point
(z,y) we have z = y.

Notice that if (X, <) is a partially ordered set, we endow the product space
X x X with the partial order relation given by

(u,v) <(z,y) < x>u andy <w.

We say that two pairs (z,y) and (u,v) are comparable.

Theorem 3.1. In addition to the hypotheses of Theorem 2.1, suppose that, for
every (a,b),(c,d) € X x X, there exists a pair (u,v) € X x X such that (u,v) is
comparable to (a,b) and (¢,d). Then F has a unique coupled fized point.
Proof. Suppose that (z,y) and (z,t) are coupled fixed point of F, that is, z =
F(z,y),y= F(y,z), z= F(z,t) and t = F(¢t, 2).

Let (u,v) be an element of X x X and comparable to (z,y) and (z,¢). Suppose
that (x,y) > (u,v) (the proof is similar in other cases).

We construct the sequences {u,} and {v,} defined by

Up =u, V9o =70, Upt+1 = F(u’ruvn)y Un+1 = F('Un7un)-

We claim that (z,y) > (un,v,) for each n € N.

We will use the induction.

For n =0, as (z,y) > (u,v), this means ug = u < & and vy = v > y and, thus,
(uo,v0) < (7).
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Suppose that (z,y) > (un,vy,) for some n € N. Then using the mixed monotone
property of F', we get

Un+1 = F(un,vn) <
Un41 = F(vnyun) 2

and this proves our claim.
Since (z,y) > (un,vy), using the contractive condition we have

© (G (2, Uny1, Unt1))

= W(G (F (Jc,y),F(un,vn) 7F(Una7]n)))

< (max {G (x,upn, un) , G (Y, vn,vn) }) — ¥ (max {G (x, up, un) , G (y, vn,vn)})
< (maX{G (xa unaun) G (yavnavn)})

and

(G (Y Vn+1,Vnt1))

0 (G (F (y,¢), F (vn,nn), F (v, u,)))

» (max {G (z,un, un), G (Y, Vn,vn)}) — ¥ (max {G (2, un, un) , G (Y, Un,vn)})
© (max {G (z,un, un), G (Y, n,vn)}) .

By the last two equation and using the fact that ¢ is nondecreasing, we obtain
(3.1)

12 (max {G (-777 Un+1, un+1) G (y, Un+1, Un+1)})

=max {¢ (G (2, unt1, un+1)) , @ (G (Y, Unt1, Vnt1)) }

< @ (max{G (z,un, un) , G (Y, vn,vn)}) — ¥ (max {G (z, un, un) , G (y, 05, vn)})

< p(max {G (z,un, un), G (Y, vn,vn)}) .

VAN VAN IS

This last inequality implies that
max {G (37, Un+1, un+1) ) G (y> Un+1, Un+1)} < max {G (,CC7 U, un) ) G (ya Un,s U’n)} .

Consequently, the sequence (max{G (x,un,un),G (y,vn,vn)}) is decreasing and
nonnegative, and so, for certain o > 0

lim max {G (z,un, upn), G (y,vn,vn)} = a.

n—oo

Letting n — oo in (3.1) we have

p(a) < pla) —P(a) < p(a),

and this implies ¥(«) = 0 and, thus, a = 0.

Finally, as lim,,_,oc max {G (z, un, un) , G (Y, Un,vs)} = 0, this gives us that the
sequences {u,} and {v,} are G-convergent to x and y, respectively. This means
that

lim,, o0 G(:Z?, Un,, Un) = limy, o0 G(:Z?, €z, un) =0,

(32) hmn—>oo G(ya Un,,y Un) = hmn—>00 G(y, Y, Un) =0.
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Using a similar argument for a coupled fixed point (z,t), we can obtain {u,} and
{vn} are G-convergent to z and ¢, respectively, that is,

limy, 00 G(2, Up, Up) = lim, o G(z, z,u,) = 0,

(3.3) limy, 00 G(t, 0, vp) = limy, oo G(t, t,v,) = 0.

By the rectangle inequality, for any n € N, we have

G(z,z,2) < G(z,Un, un) + G(unp, 2, 2),
G(y7t7t> < G(yvvmvn) + G(Umtvt)

Letting n — oo in the last inequalities, and using (3.2) and (3.3) we get
G(z,z,2) = G(y,t,t) =0
and, consequently, (z,y) = (z,t). O

Theorem 3.2. In addition to the hypotheses of Theorem 2.1, if xo and yo are
comparable, then the coupled fized point (z,y) € X x X satisfies v = y.

Proof. Assume z¢ < yo (a similar argument applies for yo < x0).
Then by using the mathematical induction

Tnt+1 = F(xnayn) < F(ynaxn) = Yn+1-
Taking n — oo, we have

z= lim z, < lim y, =y.
n—oo n—oo

From the contractive condition, we get

¢ (G (z,y,y))

= (G (F(x,y), F(y,z), F(y,)))
< p(max{G(z,y,y),G(z,z,y)}) — ¥ (max {G(x,y,y), G(z,2,y)})
< ¢ (max{G(z,y,y),G(z,z,y)})

and

¢ (G (z,z,y))
=¢ (G (F(z,y), F(2,y), F(y,2)))
< ¢ (max{G(z,y,y),G(z,,y)}) — ¢ (max{G(z,y,y), G(z, z,y)})
< ¢ (max{G(z,y,y),G(z,z,y)}).

Since @ : [0,00) — [0, 00) is nondecreasing, ¢(max{a,b}) = max{p(a), p(b)} for
a,b € [0,00). Taking into account this and the last two inequalities we get

¢ (max {G(z,y,y), G(z,z,y)}) = 0.
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Using the fact that v is nondecreasing, we have

G(z,y,y) = G(z,y,y) =0

and, consequently, r = y. O

Example 3.3. Let X = [0, %] Then (X, <) is a partially ordered set with a natural
ordering of real numbers. Let G(x,y,2) = |z —y|+|y—z|+|z—z| for all z,y,z € X.
Let F: X x X — X be defined as

22 —y?41

royHl L e <
F(x,y)Z{ i x;g
37 :

Then
(1

(X, Q) is a complete G-metric space;

2) F has the mixed monotone property;

4) 0< F(0,1) and L > F(1,0);

)
(2)
(3) F is continuous;
(4)
()

there exist two altering distance functions ¢ and ¢ such that

o(G(F(z,y), F(u,v), F(w, 2)))
< cp(max{G(m, U, w)’ G(yv v, Z)}) - w(ma’X{G(xa U, ’UJ), G(yv v, Z)})

for all (x,y), (u,v),(w,2) € X x X withe <u<wandy>v >z

Thus by Theorem , F has a coupled fixed point. Moreover, (5, 3) is the unique
coupled fixed point of F.

Proof. The proofs of (1)-(4) are clear.
For any x <u < w and y > v > z, we have

G(z,u,w) =2(w —z), G(y,v,2)=2(y—z).

The proof of (5) is divided into the following cases.
Case 1. If w < z. In this case, we have r <u < w < z <wv <y, and so

22—y +1 u?—v?+1 w? — 2241
F(‘r7y) :fa F(U,’U):f, F(waz): f

Hence, we get

G(F(2,y), F(u,0), F(w,2)) =G (£, aiaptal wiegtan)
(y2 _ m2 +’U.)2 _ 22)
T max{2(y? — 22),2(w? — 2?)}

gmax{Q(y —2),2(w —x)}.

=l

INIA I
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Case 2. w > z. We divide the study in two sub-cases:
(a) If u < v, then < u < v < y. Therefore, we get

2 _ .2 1 2,2 1 1
%, F(u,v):&, F(w,z)zg.

F(x,y) = 3

Hence, we get

G(F(z,y), F(u,v), F(w, 2))

3 ) 3

(y* —2°)

(42 — 22 + w? — 22)

L imax{2(y? — 22), 2(w? — 22)}
— X

! ).

= max{2(y — 2), 2(w
(b) If u > v, hence F(u,v) = + = F(w, z); the case where z > y is obvious because

3
we get F(x,y) = % If <y, we have F(z,y) = % Therefore

Il
@
7N

xz—y2+1 u2—v2+1 l)
73

IANIAIA I

G(F(z,y), F(u,v), F(w, 2))

I
@Q
7N

8
N
sl
N
+
=
Wl
Wl
N—

(y2 22 4 w2 _Z2)

INIAINA I
00 [0 | RO [ D
=
o
w
~
[\~
—~
N
(V)
|
N
(V]
:/
[N}
—
S
(]
|
8
(V]
S—
—

In all the above cases, the condition (5) is satisfied for the altering distance
functions ¢ = I and ¢ = %I (where I is an identity mapping). Since X = [0, %] is
a totally ordered set, by Theorem 3.2, (%, %) is the the unique coupled fixed point
of F. O
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