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Abstract. In this paper, we establish coupled fixed point theorems for mixed monotone

mappings satisfying nonlinear contraction involving a pair of altering distance functions in

ordered G-metric spaces. Via presented theorems we extend and generalize the results of

Harjani et al. [J. Harjani, B. López and K. Sadarangani, Fixed point theorems for mixed

monotone operators and applications to integral equations, Nonlinear Anal. 74 (2011)

1749-1760] and Choudhury and Maity [B.S. Choudhury and P. Maity, Coupled fixed point

results in generalized metric spaces. Math. Comput. Model. 54 (2011), 73-79].

1. Introduction and Preliminaries

Mustafa and Sims [21] introduced the notion of G-metric spaces. The struc-
ture of G-metric spaces is a generalization of metric spaces. Mustafa and Sims [21]
initiated the theory of fixed points in G-metric spaces and established the Banach
contraction principle in this generalized structure. Afterwards, different authors
proved several fixed point results in this space (see, e.g., [2, 3, 6, 7, 10, 11, 18, 19,
20, 22, 27, 28]).

Definition 1.1.([21]) Let X be a nonempty set. Suppose that a mapping G :
X ×X ×X → R+ = [0,∞) satisfies:

(G1) G(x, y, z) = 0 if x = y = z;
(G2) G(x, x, y) > 0 for all x, y ∈ X with x 6= y;
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y;
(G4) (symmetry in all three variables)

G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . , ;
(G5) (rectangle inequality)

G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X.

Then G is called a G-metric on X and (X, G) is called a G-metric space or a
generalized metric space by G.
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The following are examples of G-metric spaces.

Example 1.2. Let (R, d) be the usual metric space. Define G1 and G2 by

G1(x, y, z) = d(x, y) + d(y, z) + d(x, z),
G2(x, y, z) = max{d(x, y), d(y, z), d(x, z)}

for all x, y, z ∈ R. Then it is clear that (R, G1) and (R, G2) are G-metric spaces.

Example 1.3. Let X = {a, b} and G : X ×X ×X → [0,∞) be defined by

G(a, a, a) = G(b, b, b) = 0,
G(a, a, b) = G(a, b, a) = G(b, a, a) = 1,
G(a, b, b) = G(b, a, b) = G(b, b, a) = 2.

It is easy to show that the function G satisfies all properties of Definition .

Definition 1.4.([21]) Let X be a G-metric space and let {xn} be a sequence
of points of X. A point x ∈ X is said to be the limit of a sequence {xn} if
limn,m→∞G(x, xn, xm) = 0 and we say in this case that the sequence {xn} is said
to be G-convergent to x.

Thus, xn → x in a G-metric space X if for any ε > 0, there exists a positive
integer N such that G(x, xn, xm) < ε, for all n,m ≥ N. It has been shown in [21]
that the G-metric induces a Hausdorff topology and the convergence described in
the above definition is relative to this topology.

Lemma 1.5.([21]) If X is a G-metric space, then the following are equivalent:
(i) {xn} is G-convergent to x,
(ii) G(xn, xn, x) → 0 as n →∞,
(iii) G(xn, x, x) → 0 as n →∞.

Definition 1.6.([21]) Let X be a G-metric space, a sequence {xn} is called G-
Cauchy if for every ε > 0 there is a positive integer N such that G(xn, xm, xl) < ε
for all n,m, l ≥ N , that is, if G(xn, xm, xl) → 0, as n,m, l →∞.

Lemma 1.7.[[21]] If X is a G-metric space, then the following are equivalent:
(i) The sequence {xn} is G-Cauchy.
(ii) For every ε > 0, there exists a positive integer N such that

G(xn, xm, xm) < ε for all n,m ≥ N.

Definition 1.8.([21]) A G-metric space X is said to be G-complete (or a complete
G-metric space) if every G-Cauchy sequence is G-convergent in (X,G).

Definition 1.9.([21]) Let (X,G) and (X ′, G′) be two generalized metric spaces.
A mapping f : X → X ′ is G-continuous at a point x ∈ X if and only if it is G
sequentially continuous at x, that is, whenever {xn} is G-convergent to x, {f(xn)}
is G′-convergent to f(x).
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Definition 1.10.([21]) Let X be a G-metric space. A mapping F : X × X → X
is said to be continuous if for any two G-convergent sequences {xn} and {yn} con-
verging to x and y, respectively, {F (xn, yn)} is G-convergent to F (x, y).

In recent years, there has been a lot of interest in establishing fixed point
theorems on ordered metric spaces with a contractive condition which holds for
all points that are related by partial ordering. This trend was initiated by Ran
and Reurings in [26] where they extended the Banach contraction principle in par-
tially ordered sets with some applications to matrix equations. Subsequently, Nieto
and Rodŕıguez-López [24] extended the results in [26] for non-decreasing mappings
and applied them to obtain a unique solution for a first-order ordinary differen-
tial equation with periodic boundary conditions. Recently, many researchers have
obtained common fixed point results on partially ordered metric spaces (see, e.g.,
[4, 5, 8, 9, 14, 23, 24, 25]).

Bhaskar and Lakshmikantham [12] introduced the notions of a mixed monotone
mapping and a coupled fixed point, and proved some coupled fixed point theorems
for mixed mappings in ordered metric spaces. Afterwards, Lakshmikantham and
Ćirić [16] have established coupled coincidence and coupled fixed point theorems for
two mappings F and g, where F has the mixed g-monotone property. Many other
results on coupled fixed point theory exist in the literatures [1, 13, 16, 17, 29, 30].

Definition 1.11.([12]) Let (X,≤) be a partial ordered set. A mapping F : X×X →
X is said to have the a mixed monotone property if F is monotone nondecreasing
in its first argument and is monotone nonincreasing in its second argument, that is,
for any x, y ∈ X

(1.1) x1, x2 ∈ X, x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y)

and

(1.2) y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y1) ≥ F (x, y2).

Definition 1.12.([12]) An element (x, y) ∈ X ×X is called a coupled fixed point of
mapping F : X ×X → X if

x = F (x, y) and y = F (y, x).

An altering distance function was introduced by Khan et al. in [15] where they
present some fixed point theorems.

Definition 1.13. An altering distance function is a map Ψ : [0,∞) → [0,∞)
satisfying:

(i) Ψ is continuous and nondecreasing;
(ii) Ψ(t) = 0 if and only if t = 0.
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Let (X,≤) be a partially ordered set and suppose that there exists a metric d
on X such that (X, d) is a complete metric space. Harjani, López and Sadarangani
[13] established some coupled fixed point theorems for the mixed monotone mapping
F : X ×X → X involving a pair of altering distance functions under a contractive
condition of the form

φ(d(F (x, y), F (u, v))) ≤ φ(max{d(x, u), d(y, v)})− ψ(max{d(x, u), d(y, v)})

for x, y, u, v ∈ X with x ≥ u and y ≤ v, where φ and ψ are altering distance
functions. The purpose of this work is to extend this theorem to the set of G-metric
spaces.

2. Coupled Fixed Point in G-Metric Spaces

Theorem 2.1. Let (X,≤) be a partially ordered set such that there exists a complete
G-metric on X and F : X × X → X be a continuous mapping having the mixed
monotone property. Suppose that there exist altering distance functions ϕ and ψ
such that

(2.1)
ϕ(G(F (x, y), F (u, v), F (w, z)))
≤ ϕ(max{G(x, u, w), G(y, v, z)})− ψ(max{G(x, u, w), G(y, v, z)})

for all x, y, z, u, v, w ∈ X for which x ≥ u ≥ w and y ≤ v ≤ z where either x 6= u
or y 6= v. If there exist x0, y0 ∈ X such that

x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0),

then F has a coupled fixed point.

Proof. We construct sequences (xn) and (yn) putting

xn+1 = F (xn, yn) and yn+1 = F (yn, xn) for n ≥ 0.

In order that the proof is more comprehensive, we will divide it in several steps.

Step 1. xn ≤ xn+1 and yn ≥ yn+1, for n ≥ 0.
In fact, we use mathematical induction.
As x0 ≤ F (x0, y0) = x1 and y0 ≥ F (y0, x0) = y1 our claim is satisfied for n = 0.
Again by the induction hypothesis and the mixed monotone property of F , we have

xn+1 = F (xn, yn) ≥ F (xn−1, yn−1) = xn

and

yn+1 = F (yn, xn) ≤ F (yn−1, xn−1) = yn.

This proves our claim.

Step 2. limn→∞G (xn, xn+1, xn+1) = limn→∞G (yn, yn+1, yn+1) = 0.
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From the contractive condition (2.1) and Step 1, we obtain

(2.2)

ϕ (G (xn, xn+1, xn+1))
= ϕ (G (F (xn−1, yn−1) , F (xn, yn) , F (xn, yn)))
≤ ϕ (max{G(xn−1, xn, xn), G(yn−1, yn, yn)})

−ψ (max{G(xn−1, xn, xn), G(yn−1, yn, yn)})
≤ ϕ (max{G(xn−1, xn, xn), G(yn−1, yn, yn)}) .

Using the fact that ϕ is nondecreasing, we have

G (xn, xn+1, xn+1) ≤ max{G(xn−1, xn, xn), G(yn−1, yn, yn)}.
Similarly, we get

G (yn, yn+1, yn+1) ≤ max{G(xn−1, xn, xn), G(yn−1, yn, yn)}.
Hence, the sequence {max{G (xn, xn+1, xn+1) , G (yn, yn+1, yn+1)}}∞n=0 is nonnega-
tive and decreasing. This implies that there exists α ≥ 0 such that

lim
n→∞

max{G (xn, xn+1, xn+1) , G (yn, yn+1, yn+1)} = α.

It is easily seen that if ϕ : [0,∞) → [0,∞) is nondecreasing, ϕ(max{a1, a2}) =
max{ϕ(a1), ϕ(a2)} for a1, a2 ∈ [0,∞). Taking into account this and (2.2) we get

ϕ (max{G (xn, xn+1, xn+1) , G (yn, yn+1, yn+1)})
= max{ϕ (G (xn, xn+1, xn+1)) , ϕ (G (yn, yn+1, yn+1))}
≤ ϕ (max{G(xn−1, xn, xn), G(yn−1, yn, yn)})

−ψ (max{G(xn−1, xn, xn), G(yn−1, yn, yn)})
≤ ϕ (max{G(xn−1, xn, xn), G(yn−1, yn, yn)}) .

Since ϕ is a continuous function, letting n →∞ in the above inequalities yields

ϕ (α) ≤ ϕ (α)− ψ (α) ≤ ϕ (α) .

and this implies ψ(α) = 0. Since ψ is an altering distance function, α = 0 and

lim
n→∞

max{G (xn, xn+1, xn+1) , G (yn, yn+1, yn+1)} = 0,

and this proves our claim.

Step 3. {xn} and {yn} are G-Cauchy sequences.
Assume that at least one of the sequences {xn} and {yn} is not a G-Cauchy se-
quence. By Lemma , this implies that

lim
n,m→∞

G (xn, xm, xm) 6= 0 or lim
n,m→∞

G (yn, ym, ym) 6= 0

and, consequently,

lim
n,m→∞

max {G(xn, xm, xm), G(yn, ym, ym)} 6= 0.
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This means that there exists an ε > 0 for which we can find two subsequences
{xm(k)} and {xn(k)} of {xk} such that n(k) is the smallest index for which

(2.3) max
{
G

(
xn(k), xm(k), xm(k)

)
, G

(
yn(k), ym(k), ym(k)

)} ≥ ε

for n(k) > m(k) > k.
This means that

(2.4) max
{
G

(
xn(k)−1, xm(k), xm(k)

)
, G

(
yn(k)−1, ym(k), ym(k)

)}
< ε.

The rectangle inequality and (2.4) give us, for each k,

(2.5)
G

(
xn(k), xm(k), xm(k)

)
≤ G

(
xn(k), xn(k)−1, xn(k)−1

)
+ G

(
xn(k)−1, xm(k), xm(k)

)
< G

(
xn(k), xn(k)−1, xn(k)−1

)
+ ε

and

(2.6)
G

(
yn(k), ym(k), ym(k)

)
≤ G

(
yn(k), yn(k)−1, yn(k)−1

)
+ G

(
yn(k)−1, ym(k), ym(k)

)
< G

(
yn(k), yn(k)−1, yn(k)−1

)
+ ε

Using (2.3), (2.5) and (2.6), we get

ε ≤ max
{
G

(
xn(k), xm(k), xm(k)

)
, G

(
yn(k), ym(k), ym(k)

)}
< max

{
G

(
xn(k), xn(k)−1, xn(k)−1

)
, G

(
yn(k), yn(k)−1, yn(k)−1

)}
+ ε.

Letting k →∞ in the last inequality and using Step 2, we obtain that

(2.7) lim
k→∞

max
{
G

(
xn(k), xm(k), xm(k)

)
, G

(
yn(k), ym(k), ym(k)

)}
= ε.

Again, the rectangle inequality and (2.4) give us, for each k,

(2.8)
G

(
xn(k)−1, xm(k)−1, xm(k)−1

)
≤ G

(
xn(k)−1, xm(k), xm(k)

)
+ G

(
xm(k), xm(k)−1, xm(k)−1

)
< ε + G

(
xm(k), xm(k)−1, xm(k)−1

)

and

(2.9)
G

(
yn(k)−1, ym(k)−1, ym(k)−1

)
≤ G

(
yn(k)−1, ym(k), ym(k)

)
+ G

(
ym(k), ym(k)−1, ym(k)−1

)
< ε + G

(
ym(k), ym(k)−1, ym(k)−1

)
.

By (2.8) and (2.9) we get
(2.10)

max
{
G

(
xn(k)−1, xm(k)−1, xm(k)−1

)
, G

(
yn(k)−1, ym(k)−1, ym(k)−1

)}
< max

{
G

(
xm(k), xm(k)−1, xm(k)−1

)
, G

(
ym(k), ym(k)−1, ym(k)−1

)}
+ ε.
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Using the rectangle inequality we have

G
(
xn(k), xm(k), xm(k)

)
≤ G

(
xn(k), xn(k)−1, xn(k)−1

)
+ G

(
xn(k)−1, xm(k)−1, xm(k)−1

)
+ G

(
xm(k)−1, xm(k), xm(k)

)

and
G

(
yn(k), ym(k), ym(k)

)
≤ G

(
yn(k), yn(k)−1, yn(k)−1

)
+ G

(
yn(k)−1, ym(k)−1, ym(k)−1

)
+ G

(
ym(k)−1, ym(k), ym(k)

)
.

By the two last inequalities and (2.3) we get
(2.11)

ε ≤ max
{
G

(
xn(k), xm(k), xm(k)

)
, G

(
yn(k), ym(k), ym(k)

)}
≤ max

{
G

(
xn(k), xn(k)−1, xn(k)−1

)
, G

(
yn(k), yn(k)−1, yn(k)−1

)}
+max

{
G

(
xn(k)−1, xm(k)−1, xm(k)−1

)
, G

(
yn(k)−1, ym(k)−1, ym(k)−1

)}
+max

{
G

(
xm(k)−1, xm(k), xm(k)

)
, G

(
ym(k)−1, ym(k), ym(k)

)}
.

By (2.10) and (2.11) we have

ε + max
{
G

(
xm(k), xm(k)−1, xm(k)−1

)
, G

(
ym(k), ym(k)−1, ym(k)−1

)}

> max
{
G

(
xn(k)−1, xm(k)−1, xm(k)−1

)
, G

(
yn(k)−1, ym(k)−1, ym(k)−1

)}

≥ ε − max
{
G

(
xn(k), xn(k)−1, xn(k)−1

)
, G

(
yn(k), yn(k)−1, yn(k)−1

)}

−max
{
G

(
xm(k)−1, xm(k), xm(k)

)
, G

(
ym(k)−1, ym(k), ym(k)

)}
.

Letting k →∞ in the last inequality, and by Step 2, we obtain that

(2.12) max
{
G

(
xn(k)−1, xm(k)−1, xm(k)−1

)
, G

(
yn(k)−1, ym(k)−1, ym(k)−1

)}
= ε.

Since n(k) > m(k) > k, by Step 1

xn(k)−1 ≤ xn(k) and yn(k)−1 ≥ yn(k)

and using the contractive condition we can obtain

ϕ
(
G

(
xn(k), xm(k), xm(k)

))
= ϕ

(
G

(
F

(
xn(k)−1, yn(k)−1

)
, F

(
xm(k)−1, ym(k)−1

)
, F

(
xm(k)−1, ym(k)−1

)))
≤ ϕ

(
max

{
G

(
xn(k)−1, xm(k)−1, xm(k)−1

)
, G

(
yn(k)−1, ym(k)−1, ym(k)−1

)})
− ψ

(
max

{
G

(
xn(k)−1, xm(k)−1, xm(k)−1

)
, G

(
yn(k)−1, ym(k)−1, ym(k)−1

)})

and

ϕ
(
G

(
yn(k), ym(k), ym(k)

))
= ϕ

(
G

(
F

(
yn(k)−1, xn(k)−1

)
, F

(
ym(k)−1, xm(k)−1

)
, F

(
ym(k)−1, xm(k)−1

)))
≤ ϕ

(
max

{
G

(
xn(k)−1, xm(k)−1, xm(k)−1

)
, G

(
yn(k)−1, ym(k)−1, ym(k)−1

)})
− ψ

(
max

{
G

(
xn(k)−1, xm(k)−1, xm(k)−1

)
, G

(
yn(k)−1, ym(k)−1, ym(k)−1

)})
.
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Thus,
(2.13)

ϕ
(
max

{
G

(
xn(k), xm(k), xm(k)

)
, G

(
yn(k), ym(k), ym(k)

)})
≤ ϕ

(
max

{
G

(
xn(k)−1, xm(k)−1, xm(k)−1

)
, G

(
yn(k)−1, ym(k)−1, ym(k)−1

)})
− ψ

(
max

{
G

(
xn(k)−1, xm(k)−1, xm(k)−1

)
, G

(
yn(k)−1, ym(k)−1, ym(k)−1

)})
.

Finally, letting k → ∞ in (2.13) and using (2.7), (2.12), and the continuity of
ϕ and ψ, we get

ϕ(ε) ≤ ϕ(ε)− ψ(ε)

and, consequently, ψ(ε) = 0. Since ψ is an altering distance function, ε = 0, and
this is a contradiction. This proves our claim.

Since (X,G) is a complete G-metric space there exist x, y ∈ X such that the
sequences {xk} and {yk} are G-convergent to x and y, respectively.

In fact, using the continuity of F we have

x = lim
k→∞

xk+1 = lim
k→∞

F (xk, yk) = F

(
lim

k→∞
xk, lim

k→∞
yk

)
= F (x, y)

y = lim
k→∞

yk+1 = lim
k→∞

F (yk, xk) = F

(
lim

k→∞
yk, lim

k→∞
xk

)
= F (y, x) .

This proves that (x, y) is a coupled fixed point F . 2

In the following result, the continuity of F is not required.

Theorem 2.2. Let (X,≤) be a partially ordered set such that there exists a complete
G-metric on X and F : X × X → X be a mapping having the mixed monotone
property. Suppose that there exist altering distance functions ϕ and ψ such that

(2.14) G(F (x, y), F (u, v), F (w, z))
≤ ϕ(max{G(x, u, w), G(y, v, z)})− ψ(max{G(x, u, w), G(y, v, z)})

for all x, y, z, u, v, w ∈ X for which x ≥ u ≥ w and y ≤ v ≤ z where either x 6= u
or y 6= v. If there exists x0, y0 ∈ X such that

x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0)

and X has the following property:

(i) if a nondecreasing sequence {xn} is G-convergent to x, then xn ≤ x for all
n ∈ N ,

(ii) if a nonincreasing sequence {yn} is G-convergent to y, then yn ≥ y for all
n ∈ N ,

then F has a coupled fixed point.

Proof. Following the proof of Theorem we only have to check that (x, y) is a coupled
fixed point of F .
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In fact, since {xn} is nondecreasing and xn → x, and {yn} is nonincreasing and
yn → y, by our assumption, xn ≤ x and yn ≥ y for every n ∈ N.

Applying the contractive condition of altering distance functions ϕ and ψ we
have

ϕ (G (F (x, y) , F (xn, yn) , F (xn, yn)))
≤ ϕ (max {G (x, xn, xn)G (y, yn, yn)})− ψ (max {G (x, xn, xn)G (y, yn, yn)})
≤ ϕ (max {G (x, xn, xn)G (y, yn, yn)}) .

and, since ϕ is nondecreasing, we obtain

(2.15) G (F (x, y) , F (xn, yn) , F (xn, yn)) ≤ max {G (x, xn, xn)G (y, yn, yn)} .

On the other hand, by the rectangle inequality and (2.15) we get

G (x, F (x, y) , F (x, y))
≤ G (x, xn+1, xn+1) + G (xn+1, F (x, y) , F (x, y))
= G (x, xn+1, xn+1) + G (F (xn, yn) , F (x, y) , F (x, y))
≤ G (x, xn+1, xn+1) + max {G (xn, x, x) , G (yn, y, y)} .

Taking n →∞ in the last inequality, Lemma 1.3 yields

G (x, F (x, y) , F (x, y)) = 0

and hence, x = F (x, y).
Using a similar argument it can be proved that y = F (y, x) and this finished

the proof. 2

Now, we will show that many results can be deduced from our previously ob-
tained results.

Corollary 2.3. If in Theorem 2.1 (resp. Theorem 2.3) we replace the contractive
condition by

there exists α ∈ [0, 1) such that

G(F (x, y), F (u, v), F (w, z)) ≤ α ·max{G(x, u, w), G(y, v, z)}

for all x ≥ u ≥ wand y ≤ v ≤ z where either x 6= u or y 6= v,

then F has a coupled fixed point of F .

Proof. Taking as ϕ = identity and ψ = (1− α)ϕ, we obtain the corollary. 2

Corollary 2.4. If in Theorem 2.1 (resp. Theorem 2.2) we replace the contractive
condition by
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there exist δ1, δ2 ∈ [0, 1) and δ1 + δ2 < 1 such that

G(F (x, y), F (u, v), F (w, z)) ≤ δ1 G(x, u, w) + δ2 G(y, v, z)

for all x ≥ u ≥ wand y ≤ v ≤ z where either x 6= u or y 6= v,

then F has a coupled fixed point of F .

Proof. We have

G(F (x, y), F (u, v), F (w, z)) ≤ δ1 G(x, u, w) + δ2 G(y, v, z)
≤ (δ1 + δ2) max{G(x, u, w), G(y, v, z)}.

Therefore, applying Corollary 2.3 we obtain the desired result. 2

Remark 2.5. Taking δ1 = δ2 = k
2 in Corollary 2.4, we can obtain Theorem 3.2 of

Choudhury and Maity [10].

3. Uniqueness of Coupled Fixed Point in G-Metric Spaces

In this section, we consider some additional conditions to ensure the uniqueness
of a coupled fixed point in the setting of partially ordered G-metric spaces. Fur-
thermore, we study appropriate conditions to ensure that for a coupled fixed point
(x, y) we have x = y.

Notice that if (X,≤) is a partially ordered set, we endow the product space
X ×X with the partial order relation given by

(u, v) ≤ (x, y) ⇔ x ≥ u and y ≤ v.

We say that two pairs (x, y) and (u, v) are comparable.

Theorem 3.1. In addition to the hypotheses of Theorem 2.1, suppose that, for
every (a, b), (c, d) ∈ X × X, there exists a pair (u, v) ∈ X × X such that (u, v) is
comparable to (a, b) and (c, d). Then F has a unique coupled fixed point.

Proof. Suppose that (x, y) and (z, t) are coupled fixed point of F , that is, x =
F (x, y), y = F (y, x), z = F (z, t) and t = F (t, z).

Let (u, v) be an element of X ×X and comparable to (x, y) and (z, t). Suppose
that (x, y) ≥ (u, v) (the proof is similar in other cases).

We construct the sequences {un} and {vn} defined by

u0 = u, v0 = v, un+1 = F (un, vn), vn+1 = F (vn, un).

We claim that (x, y) ≥ (un, vn) for each n ∈ N.
We will use the induction.
For n = 0, as (x, y) ≥ (u, v), this means u0 = u ≤ x and v0 = v ≥ y and, thus,

(u0, v0) ≤ (x, y).
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Suppose that (x, y) ≥ (un, vn) for some n ∈ N . Then using the mixed monotone
property of F , we get

un+1 = F (un, vn) ≤ F (x, y) = x,
vn+1 = F (vn, un) ≥ F (y, x) = y

and this proves our claim.
Since (x, y) ≥ (un, vn), using the contractive condition we have

ϕ (G (x, un+1, un+1))
= ϕ (G (F (x, y) , F (un, vn) , F (un, vn)))
≤ ϕ (max {G (x, un, un) , G (y, vn, vn)})− ψ (max {G (x, un, un) , G (y, vn, vn)})
≤ ϕ (max {G (x, un, un) , G (y, vn, vn)})

and

ϕ (G (y, vn+1, vn+1))
= ϕ (G (F (y, c) , F (vn, nn) , F (vn, un)))
≤ ϕ (max {G (x, un, un) , G (y, vn, vn)})− ψ (max {G (x, un, un) , G (y, vn, vn)})
≤ ϕ (max {G (x, un, un) , G (y, vn, vn)}) .

By the last two equation and using the fact that ϕ is nondecreasing, we obtain
(3.1)

ϕ (max {G (x, un+1, un+1) , G (y, vn+1, vn+1)})
= max {ϕ (G (x, un+1, un+1)) , ϕ (G (y, vn+1, vn+1))}
≤ ϕ (max {G (x, un, un) , G (y, vn, vn)})− ψ (max {G (x, un, un) , G (y, vn, vn)})
≤ ϕ (max {G (x, un, un) , G (y, vn, vn)}) .

This last inequality implies that

max {G (x, un+1, un+1) , G (y, vn+1, vn+1)} ≤ max {G (x, un, un) , G (y, vn, vn)} .

Consequently, the sequence (max {G (x, un, un) , G (y, vn, vn)}) is decreasing and
nonnegative, and so, for certain α ≥ 0

lim
n→∞

max {G (x, un, un) , G (y, vn, vn)} = α.

Letting n →∞ in (3.1) we have

ϕ(α) ≤ ϕ(α)− ψ(α) ≤ ϕ(α),

and this implies ψ(α) = 0 and, thus, α = 0.
Finally, as limn→∞max {G (x, un, un) , G (y, vn, vn)} = 0, this gives us that the

sequences {un} and {vn} are G-convergent to x and y, respectively. This means
that

(3.2)
limn→∞G(x, un, un) = limn→∞G(x, x, un) = 0,
limn→∞G(y, vn, vn) = limn→∞G(y, y, vn) = 0.
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Using a similar argument for a coupled fixed point (z, t), we can obtain {un} and
{vn} are G-convergent to z and t, respectively, that is,

(3.3) limn→∞G(z, un, un) = limn→∞G(z, z, un) = 0,
limn→∞G(t, vn, vn) = limn→∞G(t, t, vn) = 0.

By the rectangle inequality, for any n ∈ N , we have

G(x, z, z) ≤ G(x, un, un) + G(un, z, z),
G(y, t, t) ≤ G(y, vn, vn) + G(vn, t, t)

Letting n →∞ in the last inequalities, and using (3.2) and (3.3) we get

G(x, z, z) = G(y, t, t) = 0

and, consequently, (x, y) = (z, t). 2

Theorem 3.2. In addition to the hypotheses of Theorem 2.1, if x0 and y0 are
comparable, then the coupled fixed point (x, y) ∈ X ×X satisfies x = y.

Proof. Assume x0 ≤ y0 (a similar argument applies for y0 ≤ x0).
Then by using the mathematical induction

xn+1 = F (xn, yn) ≤ F (yn, xn) = yn+1.

Taking n →∞, we have

x = lim
n→∞

xn ≤ lim
n→∞

yn = y.

From the contractive condition, we get

ϕ (G (x, y, y))
= ϕ (G (F (x, y), F (y, x), F (y, x)))
≤ ϕ (max {G(x, y, y), G(x, x, y)})− ψ (max {G(x, y, y), G(x, x, y)})
≤ ϕ (max {G(x, y, y), G(x, x, y)})

and

ϕ (G (x, x, y))
= ϕ (G (F (x, y), F (x, y), F (y, x)))
≤ ϕ (max {G(x, y, y), G(x, x, y)})− ψ (max {G(x, y, y), G(x, x, y)})
≤ ϕ (max {G(x, y, y), G(x, x, y)}) .

Since ϕ : [0,∞) → [0,∞) is nondecreasing, ϕ(max{a, b}) = max{ϕ(a), ϕ(b)} for
a, b ∈ [0,∞). Taking into account this and the last two inequalities we get

ψ (max {G(x, y, y), G(x, x, y)}) = 0.
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Using the fact that ψ is nondecreasing, we have

G(x, y, y) = G(x, y, y) = 0

and, consequently, x = y. 2

Example 3.3. Let X = [0, 1
2 ]. Then (X,≤) is a partially ordered set with a natural

ordering of real numbers. Let G(x, y, z) = |x−y|+ |y−z|+ |z−x| for all x, y, z ∈ X.
Let F : X ×X → X be defined as

F (x, y) =
{

x2−y2+1
3 , x ≤ y
1
3 , x > y.

Then

(1) (X,G) is a complete G-metric space;

(2) F has the mixed monotone property;

(3) F is continuous;

(4) 0 ≤ F (0, 1
2 ) and 1

2 ≥ F (1
2 , 0);

(5) there exist two altering distance functions ϕ and ψ such that

ϕ(G(F (x, y), F (u, v), F (w, z)))
≤ ϕ(max{G(x, u, w), G(y, v, z)})− ψ(max{G(x, u, w), G(y, v, z)})

for all (x, y), (u, v), (w, z) ∈ X ×X with x ≤ u ≤ w and y ≥ v ≥ z.

Thus by Theorem , F has a coupled fixed point. Moreover,
(

1
3 , 1

3

)
is the unique

coupled fixed point of F .

Proof. The proofs of (1)-(4) are clear.
For any x ≤ u ≤ w and y ≥ v ≥ z, we have

G(x, u, w) = 2(w − x), G(y, v, z) = 2(y − z).

The proof of (5) is divided into the following cases.
Case 1. If w ≤ z. In this case, we have x ≤ u ≤ w ≤ z ≤ v ≤ y, and so

F (x, y) =
x2 − y2 + 1

3
, F (u, v) =

u2 − v2 + 1
3

, F (w, z) =
w2 − z2 + 1

3
.

Hence, we get

G(F (x, y), F (u, v), F (w, z)) = G
(

x2−y2+1
3 , u2−v2+1

3 , w2−z2+1
3

)

= 2
3 (y2 − x2 + w2 − z2)

≤ 1
3 max{2(y2 − z2), 2(w2 − x2)}

≤ 1
3 max{2(y − z), 2(w − x)}.
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Case 2. w > z. We divide the study in two sub-cases:
(a) If u ≤ v, then x ≤ u ≤ v ≤ y. Therefore, we get

F (x, y) =
x2 − y2 + 1

3
, F (u, v) =

u2 − v2 + 1
3

, F (w, z) =
1
3
.

Hence, we get

G(F (x, y), F (u, v), F (w, z)) = G
(

x2−y2+1
3 , u2−v2+1

3 , 1
3

)

= 2
3 (y2 − x2)

≤ 2
3 (y2 − x2 + w2 − z2)

≤ 1
3 max{2(y2 − z2), 2(w2 − x2)}

≤ 1
3 max{2(y − z), 2(w − x)}.

(b) If u > v, hence F (u, v) = 1
3 = F (w, z); the case where x > y is obvious because

we get F (x, y) = 1
3 . If x ≤ y, we have F (x, y) = x2−y2+1

3 . Therefore

G(F (x, y), F (u, v), F (w, z)) = G
(

x2−y2+1
3 , 1

3 , 1
3

)

= 2
3 (y2 − x2)

≤ 2
3 (y2 − x2 + w2 − z2)

≤ 1
3 max{2(y2 − z2), 2(w2 − x2)}

≤ 1
3 max{2(y − z), 2(w − x)}.

In all the above cases, the condition (5) is satisfied for the altering distance
functions ϕ = I and ψ = 2

3I (where I is an identity mapping). Since X = [0, 1
2 ] is

a totally ordered set, by Theorem 3.2,
(

1
3 , 1

3

)
is the the unique coupled fixed point

of F . 2
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[6] H. Aydi, B. Damjanović, B. Samet, W. Shatanawi, Coupled fixed point theorems for
nonlinear contractions in partially ordered G-metric spaces, Math. Comput. Model.,
54(2011), 2443-2450

[7] H. Aydi, M. Postolache, W. Shatanawi, Coupled fixed point results for (ψ, φ)-weakly
contractive mappings in ordered G-metric spaces. Comput. Math. Appl., 63(2012),
298-309

[8] I. Beg, A. R. Butt, Fixed point for set-valued mappings satisfying an implicit relation
in partially ordered metric spaces, Nonlinear Anal., 71(2009) 3699-3704.
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