• Title/Summary/Keyword: Nonlinear friction

Search Result 503, Processing Time 0.027 seconds

Automatic System Development by Using Friction Force and Stiffness with Nonlinear Characteristic (비선형 마찰과 강성을 이용한 자동화 시스템 개발)

  • Lee, Jeong-Wook;Cho, Yong-Hee;Chang, Yong-Hoon;Kim, Jung-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1055-1063
    • /
    • 2004
  • In this study, we developed an automatic veneer sorting system controlled by nonlinear friction and nonlinear stiffness. With these nonlinear characteristics, it was difficult to analysis and to control the system in the fast. However it is necessary to consider nonlinear characteristics to satisfy accurate and rapid control demand in these days. We used not only nonlinear friction but also nonlinear stiffness and combined both to control the system. An experimental device was designed with 4 AC servo-motors and 2 Sensors. Through a series of experiment, we found nonlinear friction characteristics among roller versus veneer and veneer versus veneer and nonlinear stiffness characteristics with stacked veneers. Finally, we showed that the proposed control algorithm was very effective for veneer sorting system with nonlinear friction and stiffness.

Sliding Mode Control with Friction Observer for a Precise Mechanical System in the Presence of Nonlinear Dynamic Friction

  • Han, Seong-Ik
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.296-304
    • /
    • 2002
  • A position tracking control schemes on the precise mechanical system in presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the bristle friction model to compensate effects of friction. The conventional sliding mode controller often has been used as a non-model-based friction controller, but it has a poor tracking performance in high-precision position tracking application since it completely cannot compensate the friction effect below a certain precision level. Thus to improve the precise position tracking performance, we propose the sliding mode control method combined with the friction-model-based observer having tunable structure of the transient response. Then this control scheme has a good transient response as well as the high precise tracking performance compared with the conventional sliding mode control without observer and the control system with similar type of observer. The experiments on the bali-screw drive table with the nonlinear dynamic friction show the feasibility of the proposed control scheme.

Performance Evaluation of Nonlinear Character Friction Control

  • Cho, Yong-Hee;Lee, Won-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2551-2554
    • /
    • 2003
  • In this paper, we describe the nonlinear character for a friction control. The nonlinear character of friction control is inherent in mechanical system, which has gained more and more interest. The modeling and compensation of nonlinear friction are difficult tasks for precise motion control. This paper is performance evaluation of nonlinearities and mechanical compliance exists together with friction control system.

  • PDF

Position Control for the XY Drive System with Lu-Gre Friction Model (Lu-Gre 마찰 모델을 갖는 XY구동계의 위치제어)

  • 한성익;방두열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.186-189
    • /
    • 2001
  • In a precise control system, the Lu-Gre friction model has often been used to describe the nonlinear friction. For the XY table system with this friction model, we identified the friction parameters and designed nonlinear observer. The nonlinear friction effects could be removed within appropriate position tracking errors and control inputs through experiments. Also, we designed the nonmodel-based SMC system to compensate the nonlinear friction. Through experiments, it is shown that this method has the similar performance compared with the nonlinear observer system and is useful when friction parameters are hard to identify except the problem of input chattering.

  • PDF

Limit Cycle Application to Friction Identification and Compensation (한계사이클을 이용한 마찰력의 규명 및 보상)

  • Kim Min-Seok;Kim Myoung-Zoo;Chung Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.938-946
    • /
    • 2005
  • Friction is a dominant nonlinear factor in servomechanisms, which seriously deteriorates system accuracy. A friction compensator is indispensable to fabricate high-performance servomechanisms. In order to compensate for the friction in the servomechanism, identification of the friction elements is required. To estimate the friction of the servomechanism, an accurate linear element model of the system is required first. Tn this paper, a nonlinear friction model, in which static, coulomb and viscous frictions as well as Stribeck effect are included, is identified through the describing function approximation of the nonlinear element. A nonlinear element composed of two relays is intentionally devised to induce various limit cycle conditions in the velocity control loop of the servomechanism. The friction coefficients are estimated from the intersection points of the linear and nonlinear elements in the complex plane. A Butterworth filter is added to the velocity control loop not only to meet the assumption of the harmonic balance method but also to improve the accuracy of the friction identification process. Validity of the proposed method is confirmed through numerical simulations and experiments. In addition, a model-based friction compensator is applied as a feedforward controller to compensate fur the nonlinear characteristics of the servomechanism and to verify the effectiveness of the proposed identification method.

A Study on the Identification of Nonlinear Vibration System with Stick Slip Friction (Stick-Slip 마찰이 있는 비선형 진동 시스템의 규명에 관한 연구)

  • 허인호;이병림;이재응
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.451-456
    • /
    • 2000
  • In this paper a discrete time model for the identification of nonlinear vibration system with stick-slip friction is proposed. The proposed model can handle the highly nonlinear behavior of the friction such as stick-slip phenomenon and Stribeck effect. The basic idea of the proposed model is as follows : If the nonlinearity of the system can be predicted as a simple function then this nonlinear function term cab be directly used in the discrete time model. By doing this the number of nonlinear terms in the model can be much less than those of NARMAX model which is widely used nonlinear discrete model. The simulation result shows that the proposed model can estimate the response of the nonlinear vibration system with stick-slip friction very well with less computational effort.

  • PDF

Position Tracking Control on the XY Ball-screw Drive System with the Nonlinear Dynamic Friction (비선형 동적마찰을 갖는 XY볼-스크류 구동계에 대한 위치 추종제어)

  • Han, Seong-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.51-61
    • /
    • 2002
  • A tracking control scheme on the XY ball-screw drive system in the presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the Lund-Grenoble friction model to compensate effects of friction. The conventional VSC method that often has been used as a non-model-based friction controller has poor tracking performance in high-precision position tracking application since it cannot compensate the friction effect below a certain precision level completely. Thus to improve the precise position tracking performance, we propose the integral type VSC method combined with the friction-model-based observer. Then this control scheme has the high precise tracking performance compared with the non-model-baked VSC method and the PID control method with a similar observer. This fact is shown through the experiment on the XY ball-screw drive system with the nonlinear dynamic friction.

Robust Digital Nonlinear Friction Compensation-Application (견실한 비선형 마찰보상 이산제어 - 응용)

  • Kang, M.S.;Song, W.G.;Kim, C.J.;Lee, S.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.108-117
    • /
    • 1997
  • To prove the stability and the effectiveness of the robust non-linear friction control suggested and proved analytically in the previous paper, the describing function analysis is introduced. The instability of the Southward's nonlinear friction compensation for a digital position control and the improvement of phase margin of the robust nonlinear friction compensation are verified qualitatively through the describing function analysis. Those controls are applied to a single-axis digital servo driving experimental setup which has inherent stick-slip friction and experimental results confirm the results obtained in and the effectiveness of the robust nonlinear friction compensation for a digital position control.

  • PDF

Precise Control of Dynamic Friction Using SMC and Nonlinear Observer (SMC와 비선형관측기를 이용한 동적마찰에 대한 정밀추종제어)

  • Han, Seong-Ik
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.692-697
    • /
    • 2001
  • A precise tracking control scheme on the system in presence of nonlinear dynamic friction is proposed. In this control scheme, the standard SMC is combined with the nonlinear observer to estimate the dynamic friction state that is impossible to measure. Then this control scheme has the good tracking performance and the robustness to parameter variation compared with the standard SMC and the PiD based nonlinear observer control system. This fact is proved by the experiment on the ball-screw driven servo system with the dynamic friction model.

  • PDF

Adaptive High Precision Control of Dynamic System Using Friction Compensation Schemes (마찰력 보상 기법을 이용한 동적 시스템의 고 정밀 적응제어)

  • Jeon, Buyng-Gyoon;Jeon, Gi-Joon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.10
    • /
    • pp.555-562
    • /
    • 2000
  • We propose an adaptive nonlinear control algorithm for compensation of the stick-slip friction in a dynamic system. The friction force and mass of the system are estimated and compensated by adaptive control law. Especially, as the nonlinear control input in a small tracking error zone is enlarged by the nonlinear function, the steady state error is significantly reduced. The proposed algorithm is a direct adaptive control method based on the Laypunov stability theory, and its convergence is guaranteed under the bounded noise or torque disturbance. We verified the performance of the proposed algorithm by computer simulation on one-DOF mechanical system with friction.

  • PDF