• Title/Summary/Keyword: Nonlinear fractional programming

Search Result 6, Processing Time 0.025 seconds

NONLINEAR FRACTIONAL PROGRAMMING PROBLEM WITH INEXACT PARAMETER

  • Bhurjee, A.K.;Panda, G.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.853-867
    • /
    • 2013
  • In this paper a methodology is developed to solve a nonlinear fractional programming problem, whose objective function and constraints are interval valued functions. Interval valued convex fractional programming problem is studied. This model is transformed to a general convex programming problem and relation between the original problem and the transformed problem is established. These theoretical developments are illustrated through a numerical example.

ON FRACTIONAL PROGRAMMING CONTAINING SUPPORT FUNCTIONS

  • HUSAIN I.;JABEEN Z.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.361-376
    • /
    • 2005
  • Optimality conditions are derived for a nonlinear fractional program in which a support function appears in the numerator and denominator of the objective function as well as in each constraint function. As an application of these optimality conditions, a dual to this program is formulated and various duality results are established under generalized convexity. Several known results are deduced as special cases.

OPTIMALITY AND DUALITY IN NONDIFFERENTIABLE MULTIOBJECTIVE FRACTIONAL PROGRAMMING USING α-UNIVEXITY

  • Gupta, Rekha;Srivastava, Manjari
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.359-375
    • /
    • 2014
  • In this paper, a multiobjective nondifferentiable fractional programming problem (MFP) is considered where the objective function contains a term involving the support function of a compact convex set. A vector valued (generalized) ${\alpha}$-univex function is defined to extend the concept of a real valued (generalized) ${\alpha}$-univex function. Using these functions, sufficient optimality criteria are obtained for a feasible solution of (MFP) to be an efficient or weakly efficient solution of (MFP). Duality results are obtained for a Mond-Weir type dual under (generalized) ${\alpha}$-univexity assumptions.

OPTIMALITY CONDITIONS AND DUALITY MODELS FOR MINMAX FRACTIONAL OPTIMAL CONTROL PROBLEMS CONTAINING ARBITRARY NORMS

  • G. J., Zalmai
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.5
    • /
    • pp.821-864
    • /
    • 2004
  • Both parametric and parameter-free necessary and sufficient optimality conditions are established for a class of nondiffer-entiable nonconvex optimal control problems with generalized fractional objective functions, linear dynamics, and nonlinear inequality constraints on both the state and control variables. Based on these optimality results, ten Wolfe-type parametric and parameter-free duality models are formulated and weak, strong, and strict converse duality theorems are proved. These duality results contain, as special cases, similar results for minmax fractional optimal control problems involving square roots of positive semi definite quadratic forms, and for optimal control problems with fractional, discrete max, and conventional objective functions, which are particular cases of the main problem considered in this paper. The duality models presented here contain various extensions of a number of existing duality formulations for convex control problems, and subsume continuous-time generalizations of a great variety of similar dual problems investigated previously in the area of finite-dimensional nonlinear programming.

ON SYMMETRIC DUALITY IN NONDIFFERENTIABLE MATHEMATICAL PROGRAMMING WITH F-CONVEXITY

  • AHMAD I.;HUSAIN Z.
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.371-384
    • /
    • 2005
  • Usual symmetric duality results are proved for Wolfe and Mond-Weir type nondifferentiable nonlinear symmetric dual programs under F-convexity F-concavity and F-pseudoconvexity F-pseudoconcavity assumptions. These duality results are then used to formulate Wolfe and Mond-Weir type nondifferentiable minimax mixed integer dual programs and symmetric duality theorems are established. Moreover, nondifferentiable fractional symmetric dual programs are studied by using the above programs.

Energy Efficiency Resource Allocation for MIMO Cognitive Radio with Multiple Antenna Spectrum Sensing

  • Ning, Bing;Yang, Shouyi;Mu, Xiaomin;Lu, Yanhui;Hao, Wanming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4387-4404
    • /
    • 2015
  • The energy-efficient design of sensing-based spectrum sharing of a multi-input and multi-output (MIMO) cognitive radio (CR) system with imperfect multiple antenna spectrum sensing is investigated in this study. Optimal resource allocation strategies, including sensing time and power allocation schemes, are studied to maximize the energy efficiency (EE) of the secondary base station under the transmit power and interference power constraints. EE problem is formulated as a nonlinear stochastic fractional programming of a nonconvex optimal problem. The EE problem is transformed into its equivalent nonlinear parametric programming and solved by one-dimension search algorithm. To reduce searching complexity, the search range was founded by demonstration. Furthermore, simulation results confirms that an optimal sensing time exists to maximize EE, and shows that EE is affected by the spectrum detection factors and corresponding constraints.